• Title/Summary/Keyword: Loading point

Search Result 1,127, Processing Time 0.029 seconds

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.

Prevalence and risk factors of peri-implantitis: A retrospective study (임플란트 주위염의 유병률 및 위험요소분석에 관한 후향적 연구)

  • Lee, Sae-Eun;Kim, Dae-Yeob;Lee, Jong-Bin;Pang, Eun-Kyoung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.1
    • /
    • pp.8-17
    • /
    • 2019
  • Purpose: The study analyzed the prevalence of peri-implantitis and factors which may have affected the disease. Materials and methods: This study based on medical records and radiographs of 422 patients (853 implant cases) who visited Ewha Womans University Mokdong Hospital Dental Center from January 1, 2012 to December 31, 2016. Generalized estimation equations (GEE) was utilized to determine the statistical relationship between peri-implantitis and each element, and the cumulative prevalence of peri-implantitis during the observation period was obtained by using the Kaplan Meier Method. Results: The prevalence rate of peri-implantitis at the patient level resulted in 7.3% (31 patients out of a total of 422 patients), and at the implant level 5.5% (47 implants out of a total of 853 implants). Sex, GBR, guided bone regeneration (GBR) and functional loading periods had statistical significance with the occurrence of peri-implantitis. Upon analysis of the cumulative prevalence of peri-implantitis in terms of implant follow-up period, the first case of peri-implantitis occurred at 9 months after the placement of an implant, and the prevalence of peri-implantitis showed a non-linear rise over time without a hint of a critical point. Conclusion: The prevalence of peri-implantitis at the patient level and the implant were 7.3% and 5.5%, respectively. Male, implant installed with GBR and longer Functional Loading Periods were related with the risk of peri-implantitis.

Application of BASINS/WinHSPF for Pollutant Loading Estimation in Soyang Dam Watershed (소양강댐 유역의 오염부하량 산정을 위한 BASINS/WinHSPF 적용)

  • Yoon, Chun-Gyeong;Han, Jung-Yoon;Jung, Kwang-Wook;Jang, Jae-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.201-213
    • /
    • 2007
  • In this study, the Batter Assessment Science Integrating point and Nonpoint Sources (BASINS 3.0)/window interface to Hydrological Simulation Program-FPRTRAN (WinHSPF) was applied for assessment of Soyang Dam watershed. WinHSPF calibration was performed using monitoring data from 2000 to 2004 to simulate stream flow. Water quality (water temperature, DO, BOD, nitrate, total organic nitrogen, total nitrogen, total organic phosphorus and total phosphorus) was calibrated. Calibration results for dry-days and wet-days simulation were reasonably matched with observed data in stream flow, temperature, DO, BOD and nutrient simulation. Some deviation in the model results were caused by the lack of measured watershed data, hydraulic structure data and meteorological data. It was found that most of pollutant loading was contributed by nonpoint source pollution showing about $98.6%{\sim}99.0%$. The WinHSPF BMPRAC was applied to evaluate the water quality improvement. These scenarios included constructed wetland for controlling nonpoint source poilution and wet detention pond. The results illustrated that reasonably reduced pollutant loadin. Overall, BASINS/WinHSPF was found to be applicable and can be a powerful tool in pollutant loading and BMP efficiency estimation from the watershed.

Development of A Network loading model for Dynamic traffic Assignment (동적 통행배정모형을 위한 교통류 부하모형의 개발)

  • 임강원
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.149-158
    • /
    • 2002
  • For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.

The Effect of Moisture Content on the Compressive Properties of Korean Corn Kernel (함수율(含水率)이 옥수수립(粒)의 압축특성(壓縮特性)에 미치는 영향(影響))

  • Lee, Han Man;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.113-122
    • /
    • 1986
  • In order to promote mechanization of corn harvesting in Korea, this study was conducted to find out the effect of moisture content on compressive properties such as force, deformation, energy and modulus of stiffness to the bioyield and the rupture point for Korean corn kernel. In this study, the loading positions of corn were flat, edge, longitude and the moisture contents were about 13, 17, 21, 25% in wet basis. The compression test was carreied out with flat plate by use of dynamic straingage for three varieties of Korean corn under quasi-static force when the loading rate was 1.125mm/min. The results of this study are summarized as follows; 1. When the moisture content of corn ranged from 12.5 to 24.5 percent, at flat position, the bioyied force was in the range of 13.63-26.73 kg and the maximum compressive strength was in the range of 21.55-47.65kg. Their values were reached minimum at about 17% and maximum at about 21% moisture content. The bioyield force was in the range of 13.58-6.70kg at edge position and the maximum compressive strength which was 16.42 to 7.82kg at edge position was lower than that which was 18.55-9.05kg at longitudinal position. 2. Deformation of corn varied from 0.43 to 1.37 mm at bioyield point and from 0.70 to 2.66mm at rupture point between 12.5 to 24.5% moisture content. As the moisture content increased, deformation was increased. 3. The moduli of resilience and toughness of corn ranged from 2.60 to 8.57kg. mm and from 6.41 to 34.36kg. mm when the moisture content ranged from 12.5 to 24.5 percent, respectively. As the moisture content increased, the modulus of toughness was increased at edge position and decreased at longitudinal position. And their values were equal each other at 22-23% moisture content. 4. The modulus of stiffness was decreased with increase in the moisture content. Its values ranged from 32.07 to 5.86 kg/mm at edge position and from 42.12 to 18.68kg/mm at flat position, respectively. Also, the values of Suweon 19 were higher than those of Buyeo. 5. It was considered that the compressive properties of corn at flat position were more important on the design data for corn harvesting and processing machinery than those of edge or longitudinal position. Also, grinding energy would be minimized when a corn was processed between about 12.5 to 17% moisture content and corn damage would be reduced when a corn was handled between about 19 to 24% moisture content in wet basis.

  • PDF

Spatio-temporal Water Quality Variations at Various Streams of Han-River Watershed and Empirical Models of Serial Impoundment Reservoirs (한강수계 하천에서의 시공간적 수질변화 특성 및 연속적 인공댐호의 경험적 모델)

  • Jeon, Hye-Won;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.378-391
    • /
    • 2012
  • The objective of this study was to determine temporal patterns and longitudinal gradients of water chemistry at eight artificial reservoirs and ten streams within the Han-River watershed along the main axis of the headwaters to the downstreams during 2009~2010. Also, we evaluated chemical relations and their variations among major trophic variables such as total nitrogen (TN), total phosphorus (TP), and chlorophyll-a (CHL-a) and determined intense summer monsoon and annual precipitation effects on algal growth using empirical regression model. Stream water quality of TN, TP, and other parameters degradated toward the downstreams, and especially was largely impacted by point-sources of wastewater disposal plants near Jungrang Stream. In contrast, summer river runoff and rainwater improved the stream water quality of TP, TN, and ionic contents, measured as conductivity (EC) in the downstream reach. Empirical linear regression models of log-transformed CHL-a against log-transformed TN, TP, and TN : TP mass ratios in five reservoirs indicated that the variation of TP accounted 33.8% ($R^2$=0.338, p<0.001, slope=0.710) in the variation of CHL and the variation of TN accounted only 21.4% ($R^2$=0.214, p<0.001) in the CHL-a. Overall, our study suggests that, primary productions, estimated as CHL-a, were more determined by ambient phosphorus loading rather than nitrogen in the lentic systems of artificial reservoirs, and the stream water quality as lotic ecosystems were more influenced by a point-source locations of tributary streams and intense seasonal rainfall rather than a presence of artificial dam reservoirs along the main axis of the watershed.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

A Study on Effective Management & Administration System for Deluxe Hotel Kitchen in Seoul Area. (관공호텔 조리직무의 분업과 통합에 따른 문제점과 개선방안에 관한 연구)

  • 라영선
    • Culinary science and hospitality research
    • /
    • v.1
    • /
    • pp.57-89
    • /
    • 1995
  • Despite prologed business stagnation of both international and domestic economy, hotel business as well as tourist industry has continuously been keeping growing, owing to increase of surplus income and world flowing population. During recent 4 years, growth rate of yearly mean in domestic hotels reached 9.9% and especially that of the superior class hotels 15.2%. In the composition of domestic tourist hotel's revenue, the earnings of guest rooms form 37.4%, on the other hand those of food & beverage 39.9%. This result is that our hotel business is concentrated on its interest in FOOD & BEVERAGE of which productivity per unit dimension can be increased to an unlimited extent and extent and superior class hotels strengthened in F&B are increasing in comparison with European or American hotels which are focused on guest rooms in their management. For value added rate of F&B is low as compared with increase of their earnings, they are interested in the management techniques which focus on rising the rate. As for the cost of Food & Beverage, personnel expenditure forms 36.5% and the direct materials 31.5%. Therefore how to manage personnel and materials costs which compose as much as 68% of total revenue will greatly affect net profit. We can say that an effective management technique in cost of Food & Beverage is one of the most important know-hows in hotel management. Especially management know-how for the Kitchen Department where the most of foods come out makes a great effects on various expenses, productivity and it is the achievement from hotel management. For the most of the hotel's top managers, they don't seriously take the fact that KITCHEN SYSTEM affects greatly total expenditure. This study starts from the point of recognizing the question of fundamental cause affecting tow largest cost elements incurred in Food & Beverage and trying to present an effective kitchen system. To settle the questions raised, I compared and analyzed productivity and cost of food & beverage and unit kitchen centered around superior class hotels in Seoul, which vary in Kitchen Systems. In order to attain the aforementioned study effectively purpose of this study, I compared Room-Service and Coffee-Shop Menu, flow of basic food in the kitchen, extent and result of division of labor and integration in the kitchen, scale of outlet kitchen, productivity, the turnover rate of food in store, food cost rate one another which all vary in Kitchen Systems. All these elements are compared and analyzed each other being divided into two main groups such as①. Main Production kitchen and Banquet Kitchen, and ②. coffee-shop kitchen and Room-service Kitchen. Therefore this study is to point out the problems in managing kitchens of superior class hotels which are different in systems. An effort was made to find out the better Kitchen System for superior deluxe hotels. I emphasize the followings on the proper scale of division of labor and integration of unit kitchen and a disposition plan for outlet kitchens of restaurant. First, KITCHEN SYSTEM as a sub-system of Hotel Management System is composed of sub-systems of outlet unit kitchen. Basic food materials are cooked and served for the guests while support kitchen and out restaurant kitchen interact organically each other. So Kitchen should be considered as a system composed of integrated sub-systems. Second, support and banquet kitchens should be integrated to be managed. And these unit kitchens have to be designed to be placed in the back of banquet rooms area. Third, coffee-shop kitchen and room-service kitchen should be integrated to be managed. Fourth, several unit business kitchens should be place on the same floor. Fifth, main production kitchens ought to be located near the loading duck, food store and large refrigerator. Sixth, considering the limits of supervision, duties should be adjusted as 12-20 cooks in two shifts a day for a sub-kitchen, and 18-30 cooks in three shifts a day so that labor division can be made. Last, I would like to two points for direction and task of future study. Firstly, I compare the effective income and increasing costs each other, which are incurred by increasing the use rate of the second processing materials for foods perched outside and through the results. I can find out the better points of the processing production and circulation system, and then I study this effects made on hotel kitchen system. Secondly, I can point out that more efficient kitchen system shall be established through comparing and analyzing the matter of amount of indirect costs and flow of food in different kitchen systems.

  • PDF

Environmental Impact Assessment of Rapeseed Cultivation by Life Cycle Assessment (전과정평가를 이용한 유채재배의 환경영향 평가)

  • Hong, Seung-Gil;Nam, Jae-Jak;Shin, Joung-Du;Ok, Yong-Sik;Choi, Bong-Su;Yang, Jae-E.;Kim, Jeong-Gyu;Lee, Sung-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • BACKGROUND: High input to the arable land is contributed to increasing productivity with causing the global environmental problems at the same time. Rapeseed cultivation has been forced to reassess its positive point for utilization of winter fallow field. The Objective of this study was performed to assess the environmental impact of rapeseed cultivation with double-cropping system in paddy rice on Yeonggwang district using life cycle assessment technique. METHODS AND RESULTS: For assessing each stage of rapeseed cultivation, it was collected raw data for input materials as fertilizer and pesticide and energy consumption rate by analyzing the type of agricultural machinery and working hours by 1 ton rapeseed as functional unit. Environmental impacts were evaluated by using Eco-indicator 95 method for 8 impact categories. It was estimated that 216 kg $CO_2$-eq. for greenhouse gas, 3.98E-05 kg CFC-11-eq. for ozone lazer depletion, 1.78 kg SO2-eq. for acidification, 0.28 kg $PO_4$-eq. for eutrophication, 5.23E-03 kg Pb-eq. for heavy metals, 2.51E-05 kg B(a)p-eq. for carcinogens, 1.24 kg SPM-eq. for smog and 6,460 MJ LHV for energy resource are potentially emitted to produce 1 ton rapeseed during its whole cultivation period, respectively. It was considered that 90% of these potential came from chemical fertilizer. For the sensitivity analysis, by increasing the productivity of rapeseed by 1 ton per ha, potential environmental loading was reduced at 22%. CONCLUSION(s): Fertilization affected most dominantly to the environmental burden, originated from the preuse stage, i.e. fertilizer manufacturing and transporting. It should be included and assessed an indirect emission, which is not directly emitted from agricultural activities. Recycling resource in agriculture with reducing chemical fertilizer and breeding the high productive variety might be contribute to reduce the environmental loading for the rapeseed cultivation.