• Title/Summary/Keyword: Loading path

Search Result 258, Processing Time 0.021 seconds

Stress-Strain Behaviour of Overconsolidated Clay with Loading Rate (하중재하속도에 따른 과압밀점토의 응력-변형 거동)

  • 김병일;신현영;이승원;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.239-244
    • /
    • 2001
  • Natural clayey soils or improved grounds are in a overconsolidated conditions due to changes in vertical stress and pore pressures, desiccation, ageing and so on. These grounds show inelastic stress-strain behaviour characteristics within all range of strain except very small strain (${\gamma}$$\_$s/$\leq$10 ̄$^3$∼10 ̄$^4$%) when construction, such as excavations and retaining walls, is performed. Also it strongly depends on loading rate of current stress path and recent stress path. This study carried out drained stress path tests by varying loading rate of current and recent stress path. Test results indicated that stress-strain behaviour of overconsolidated clay depends on loading rate, especially loading rate of current stress path.

  • PDF

Study of the Effect of Loading Path on the Strain and Mechanical Properties of Aluminum with Flat and Groove Rolling Experiment (순수 알루미늄의 판재압연 및 공형압연시 가공경로에 따른 변형분포와 기계적 성질의 예측)

  • Kim, S.I.;Byon, S.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.420-428
    • /
    • 2008
  • The effect of loading path changes on the strain and mechanical properties of a commercial pure aluminum was studied using flat rolling and groove rolling. Material during flat rolling undergoes a continuous monotonic compressive loading, while one during groove rolling experiences a series of cross compressive loading. Four-pass flat rolling and groove rolling experiment are designed such that the aluminum undergoes the same amount of the strain at each pass. The rolling experiment was performed at room temperatures. Specimens for tensile test are fabricated from the plate and bar rolled. In addition, the strain distribution for the plate and bar cold rolled specimens is also calculated by finite element method. The results reveal that differences of loading path attributed by monotonic loading(flat rolling) and cross loading(groove rolling) significantly influence the mechanical properties such as yield stress, ultimate tensile stress, strain hardening and elongation. It is clear that the different loading path can give raise to change the deformation history, although it is deformed with same amount of strain for same material.

Experimental investigation of SRHSC columns under biaxial loading

  • Wang, Peng;Shi, Qing X.;Wang, Feng;Wang, Qiu W.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.485-496
    • /
    • 2017
  • The behavior of 8 steel reinforced high-strength concrete (SRHSC) columns, which comprised of four identical columns with cross-shaped steel and other four identical columns with square steel tube, was investigated experimentally under cyclic uniaxial and biaxial loading independently. The influence of steel configuration and loading path on the global behavior of SRHSC columns in terms of failure process, hysteretic characteristics, stiffness degradation and ductility were investigated and discussed, as well as stress level of the longitudinal and transverse reinforcing bars and steel. The research results indicate that with a same steel ratio deformation capacity of steel reinforced concrete columns with a square steel tube is better than the one with a cross-shaped steel. Loading path affects hysteretic characteristics of the specimens significantly. Under asymmetrical loading path, hysteretic characteristics of the specimens are also asymmetry. Compared with specimens under unidirectional loading, specimens subjected to bidirectional loading have poor carrying capacity, fast stiffness degradation, small yielding displacement, poor ductility and small ultimate failure drift. It also demonstrates that loading paths affect the deformation capacity or deformation performance significantly. Longitudinal reinforcement yielding occurs before the peak load is attained, while steel yielding occurs at the peak load. During later displacement loading, strain of longitudinal and transverse reinforcing bars and steel of specimens under biaxial loading increased faster than those of specimens subjected to unidirectional loading. Therefore, the bidirectional loading path has great influence on the seismic performance such as carrying capacity and deformation performance, which should be paid more attentions in structure design.

The Shear Stiffness of Small Strain with Time Effect (미소변형 전단강성에 시간효과가 미치는 영향)

  • 김수삼;신현영;김병일
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.249-256
    • /
    • 2001
  • This study investigated the shear stiffness of level of small strain with time effect. Time effect consists of rest time, loading rate of recent and current stress path. In addition, for the measurement of small strain, overconsolidated state was represented in a triaxial cell, and drained stress path tests were carried out. Test results show that the loading rate of recent stress path has no effects on the stiffness of very small strain, but the shear stiffness of level of small strain increases with it. Finally, the rest time and the loading rate of current stress path have the effects on the shear stiffness of initial and small strain.

  • PDF

Failure Path of the Brown-oxide-coated Copper-based Leadframe/EMC Interface under Mixed-Mode Loading (혼합하중 조건하에서 갈색산화물이 입혀진 구리계 리드프레임/EMC 계면의 파손경로)

  • 이호영
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.6
    • /
    • pp.491-499
    • /
    • 2003
  • Copper-based leadframe sheets were oxidized in a hot alkaline solution to form brown-oxide layer on the surface and molded with epoxy molding compound (EMC). The brown-oxide-coated leadframe/EMC joints were machined to form sandwiched double-cantilever beam (SDCB) specimens and sandwiched Brazil-nut (SBN) specimens for the purpose of measuring the fracture toughness of leadframe/EMC interfaces. The SDCB and the SBN specimens were designed to measure the fracture toughness of the leadframe/EMC interfaces under nearly mode-I loading and mixed-mode (mode I + mode II) loading conditions, respectively. Fracture surfaces were analyzed by various equipment such as glancing-angle XRD, SEM, AES, EDS and AFM to elucidate failure path. Results showed that failure occurred irregularly in the SDCB specimens, and oxidation time of 2 minutes divided the types of irregular failures into two classes. The failure in the SBN specimens was quite different from that in the SDCB specimens. The failure path in the SBN specimens was not dependent on the phase angle as well as the distance from tips of pre-cracks.

Stress-Path Dependent Behavior of Granular Soil (입상토의 응력경로 의존거동)

  • 정진섭;권원식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.106-117
    • /
    • 1998
  • The nature of stress-path dependency, the principle that governs deformations in granular soil, and the use of Lade's double work-hardening model for predicting soil response for a variety of stress-paths have been investigated, and are examined The test results and the analyses presented show that under some conditions granular soils exhibit stress-path dependent behavior. For stress-paths involving unloading or reloading, the stress-path with the higher average stress level produces the larger strains, whereas all stress-paths having the same intial states of stress, and involving only primary loading conditions, produce strains of similar magnitudes. Experimental evidence indicates that the stress- path dependent response obtained from the double work-hardening model is also observed for real soils. It is concluded that the influence of stress history on the friction angle is negligible and the strains increment direction is uniquely determined from the state of stress but is not perpendicular to the yield surface. The strains calculated from Lade's double work-hardening model are in reasonable agreement with those measured.

  • PDF

Path Stability of a Crack with an Eigenstrain

  • Beom, Hyeon-Gyu;Kim, Yu-Hwan;Cho, Chong-Du;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1428-1435
    • /
    • 2006
  • A slightly curved crack with an eigenstrain is considered. Solutions for a slightly curved crack in a linear isotropic material under asymptotic loading as well as for a slightly curved crack in a linear isotropic material with a concentrated force are obtained from perturbation analyses, which are accurate to the first order of the parameter representing the non-straightness. Stress intensity factors for a slightly curved crack with an eigenstrain are obtained from the perturbation solutions by using a body force analogy. Particular attention is given to the crack path stability under mode I loading. A new parameter of crack path stability is proposed for a crack with an eigenstrain. The path stability of a crack with steady state growth in a transforming material and a ferroelectric material is examined.

A PATH-SWITCHING STRATEGY BY COMBINING THE USE OF GENERALIZED INVERSE AND LINE SEARCH

  • Choong, K.K.;Hangai, Y.;Kwun, T.J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.95-102
    • /
    • 1994
  • A path-switching strategy by combining the use of generalized inverse and line search is proposed. A reliable predictor for the tangent vector to bifurcation path is first computed by using the generalized inverse approach. A line search in the direction of maximum gradient of total potential at the point of intersection between the above predictor and a constant loading plane introduced in the vicinity of the detected bifurcation point is then carried out for the purpose of obtaining an improved approximation for a point on bifurcation path. With this approximation obtained, an actual point on bifurcation path is then computed through iteration on the constant loading plane.

  • PDF

Loading Path Optimization in Aluminum Tube Hydroforming using Response Surface Method (반응표면법을 이용한 알루미늄 튜브 하이드로포밍의 하중경로 최적화)

  • Lim, H.T.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.314-317
    • /
    • 2007
  • Automotive rear subframe of aluminum tube was developed by using hydroforming process, based on the numerical analysis and physical tryouts. In the previous study, the effect of prebending was evaluated on the basis of forming limit diagram which had been obtained from free bulging, T-shape forming and cross-shape forming, using the developed tube hydroformability testing system. In order to get the sound products, appropriate internal pressure is to be imposed corresponding to the axial feeding. In this study, the loading path, the combination of internal pressure and axial feeding during the process, was optimized to ensure minimum thickness variation and dimensional accuracy, by using response surface method.

  • PDF

Effect of Loading Path on the Hydroformability of a Three-layered Tube for Fabrication of a Hollow Part (중공품 성형시 삼중관의 액압성형성에 미치는 압력경로의 영향)

  • Han, S.W.;Kim, S.Y.;Joo, B.D.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • Tube hydroforming is a technology that utilizes hydraulic pressure to form a tube into desired shapes inside die cavities. Due to its advantages, such as weight reduction, increased strength, improved quality, and reduced tooling cost, single-layered tube hydroforming is widely used in industry. However in some special applications, it is necessary to produce multi-layered tubular components which have corrosion resistance, thermal resistance, conductivity, and abrasion resistance. In this study, a hollow forming process to fabricate a part from multi-layered tubes for structural purposes is proposed. To accomplish a successful hydroforming process, an analytical model that predicts optimal load path for various parameters such as tube material properties, thickness of tubes, diameter of holes and the number of holes was developed. Tubular hydroforming experiments to fabricate a hollow part were performed and the optimal loading path developed by the analytical model was successfully verified. The results show that the proposed hydroforming process can effectively produce hollow parts with multi-layered tube without defects such as wrinkling or fracture.