• Title/Summary/Keyword: Loading frequency

Search Result 846, Processing Time 0.028 seconds

Joint Subcarrier Matching, Power Allocation and Bit Loading in OFDM Dual-Hop Systems

  • Kong, Hyung-Yun;Lee, Jin-Hee
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.2
    • /
    • pp.50-55
    • /
    • 2010
  • Orthogonal Frequency Division Multiplexing(OFDM) dual-hop systems can take full advantages of the techniques of both multi-hop communication and OFDM. To achievethis end, we propose a joint subcarrier matching, power allocation and bit loading algorithm operating under a total power constraint and the same Bit Error Rate(BER) threshold over all subcarriers. Simulation results demonstrated system throughput improvement compared to single-hop systems and dual-hop systems with different bit loading algorithms for each relay position, power constraint, and required BER.

Model Updating in Small Structural Dynamics Model by Elimination of Mass Loading Effect of Accelerometer (가속도계 영향을 제거한 소형 구조물의 동특성 모델 개선)

  • Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2015
  • Dynamic response of any small structure is always affected by the mass of the attached accelerometer. This paper predicts the natural frequencies and frequency response functions by removing the mass loading effect from the accelerometer. This mass loading is studied on a simple cantilever beams by varying the location of accelerometer. By using sensitivity analysis with iteration method, accelerometer mass and location are obtained. The predicted natural frequencies of the small cantilever beam without the accelerometer's mass show good agreement with the structural re-analysis.

Modelling the dynamic response of railway track to wheel/rail impact loading

  • Cai, Z.;Raymond, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.95-112
    • /
    • 1994
  • This paper describes the formulation and application of a dynamic model for a conventional rail track subjected to arbitary loading functions that simulate wheel/rail impact forces. The rail track is idealized as a periodic elastically coupled beam system resting on a Winkler foundation. Modal parameters of the track structure are first obtained from the natural vibration characteristics of the beam system, which is discretized into a periodic assembly of a specially-constructed track element and a single beam element characterized by their exact dynamic stiffness matrices. An equivalent frequency-dependent spring coefficient representing the resilient, flexural and inertial characteristics of the rail support components is introduced to reduce the degrees of freedom of the track element. The forced vibration equations of motion of the track subjected to a series of loading functions are then formulated by using beam bending theories and are reduced to second order ordinary differential equations through the use of mode summation with non-proportional modal damping. Numerical examples for the dynamic responses of a typical track are presented, and the solutions resulting from different rail/tie beam theories are compared.

An Efficient Adaptive Modulation Scheme for Wireless OFDM Systems

  • Lee, Chang-Wook;Jeon, Gi-Joon
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.445-451
    • /
    • 2007
  • An adaptive modulation scheme is presented for multiuser orthogonal frequency-division multiplexing systems. The aim of the scheme is to minimize the total transmit power with a constraint on the transmission rate for users, assuming knowledge of the instantaneous channel gains for all users using a combined bit-loading and subcarrier allocation algorithm. The subcarrier allocation algorithm identifies the appropriate assignment of subcarriers to the users, while the bit-loading algorithm determines the number of bits given to each subcarrier. The proposed bit-loading algorithm is derived from the geometric progression of the additional transmission power required by the subcarriers and the arithmetic-geometric means inequality. This algorithm has a simple procedure and low computational complexity. A heuristic approach is also used for the subcarrier allocation algorithm, providing a trade-off between complexity and performance. Numerical results demonstrate that the proposed algorithms provide comparable performance with existing algorithms with low computational cost.

  • PDF

A Study for the Fatigue Crack Growth Behavior of Concrete (콘크리트의 피로균열 성장거동에 관한 연구)

  • 김진근;김윤용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.101-107
    • /
    • 1996
  • In this study, the wedge splitting test (WST) specimens with various strength levels were tested to investigate the fatigue crack growth behavior of concrete. Selected test variables were concrete compressive strength with 2 levels (28 MPa, 60 MPa, 100 MPa) and maximum fatigue loading with 2 levels (75%, 85%). Fatigue testing was preceded by fracture energy test and the crack growth was measured by means of the compliance calibration method, 60 WST specimens were cast for the fatigue test, and 6 companion cylinders ($\phi$100${\times}$ 200 mm) for each batch. In fatigue test, the frequency of loading cycle was 1 Hz, and the minimum fatigue loading level was 5~10 % of ultimate monotonic loading. On the basis of the experimental results, a fracture mechanics-based empirical relationships for fatigue crack growth rate (da/dN-$\Delta$KI relationships) were presented. In addition, the effect of initial notch depth on the fracture energy and the validity of compliance calibration technique for the WST were shown.

  • PDF

System identification and reliability assessment of an industrial chimney under wind loading

  • Tokuc, M. Orcun;Soyoz, Serdar
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.283-291
    • /
    • 2018
  • This study presents the reliability assessment of a 100.5 m tall reinforced concrete chimney at a glass factory under wind loading by using vibration-based identified modal values. Ambient vibration measurements were recorded and modal values such as frequencies, shapes and damping ratios were identified by using Enhanced Frequency Domain Decomposition (EFDD) method. Afterwards, Finite Element Model (FEM) of the chimney was verified based on identified modal parameters. Reliability assessment of the chimney under wind loading was performed by obtaining the exceedance probability of demand to capacity distribution. Demand distribution of the chimney was developed under repetitive seeds of multivariate stochastic wind fields generated along the height of chimney. Capacity distribution of the chimney was developed by Monte Carlo simulation. Finally, it was found that reliability of the chimney is lower than code suggested limit values.

Effect of cobalt ferrite on curing and electromagnetic properties of natural rubber composites

  • Anuchit Hunyek;Chitnarong Sirisathitkul
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • The combination of cobalt ferrite and natural rubber has a potential to enhance the functional properties of rubber ferrite composites available on the market. In this study, cobalt ferrite was synthesized by the sol-gel method with tapioca starch as a cheating agent and then incorporated into natural rubber using an internal mixer. The curing characteristics, magnetic hysteresis, complex permeability, and permittivity of the rubber ferrite composites were studied as a function of the loading from 0 to 25 phr. The cure time and scorch time tended to reduce with the addition of non-reinforced cobalt ferrite fillers. The remanent and saturation magnetizations were linearly proportional to the cobalt ferrite loading, consistent with the rule of mixture. On the other hand, the increase in cobalt ferrite loading from 5 to 25 phr slightly affected the coercive field and the complex permeability. Using the maximum loading of 25 phr, both real and imaginary parts of the permittivity were significantly raised and reduced with the frequency in the 10-300 MHz range.

The Effect of Loading Waveform on the High Temperature Fatigue Crack Propagation in P92 and STS 316L Steel (P92와 STS 316L강의 고온 피로 균열 성장에 미치는 하중 파형의 영향)

  • 김수영;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.136-140
    • /
    • 2002
  • High temperature fatigue crack growth behavior of P92 and STS 316L steel were investigated under four load conditions using CT type specimens. Loading and unloading times for the low wave forms were combinations of 1 sec. and 50 sec., which were two symmetric wave forms and two unsymmetric wave forms. Their behaviors are characterized using ΔK parameter. In STS 316L, Crack growth rate generally increases as frequency decreases. However, sensitivity of the loading rate to crack growth rate was fecund to be far greater than that of the unloading time. It is because as loading time increases, creep occurs at crack tip causing the crack growth rate to increase. However creep does not occur at the crack tip even if the unloading time is increased. In P92 steel, crack growth rate showed same behavior as in STS 316L. But the increase in loading or unloading time made almost no difference in crack growth rate, suggesting that no significant creep occurs in P92 steel even though loading time increases. After conducting high temperature tensile tests and comparing high temperature fatigue crack growth rates under various wave forms, it was proved that P92 steel has not only good high temperature properties but also improved, better high temperature fatigue properties than STS 316L.

Melt Rheology and Property of Short Aramid Fiber Reinforced Polyethylene Composites (아라미드단섬유강화 폴리에틸렌복합재료의 용융특성 및 물성)

  • Choi, Chi Hoon;Ok, Young Sook;Kim, Byung Kyu;Ha, Chang Sik;Cho, Wong Jei;Shin, Young Jo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • Polyethylenes were reinforced with short aramid fibers on an open roll. Fiber orientation and the anisotropy of physical property were studied using scanning electron microscopy and tensile tester, together with the melt properties from an RDS rheometer. It was found that fiber orientation was obtained in roll operation, and the anisotropy of property became greater with the increase of fiber loading. Melt viscosity measurements indicated that the viscosity increases with fiber loading, with the effect much more pronounced at low loading and low frequency.

  • PDF

Characteristics of Static Loading and Dynamic Loading Tests for Bridge Capability (교량 내하력 평가를 위한 정적재하시험 및 동적재하시험 특성)

  • Lee, Sang Hun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.638-649
    • /
    • 2020
  • Purpose: The objective of this study is to evaluate the load carrying capacity of a target bridge structure based on the simple slab bridge of concrete over 20 years of public service. Method: By performing static loading test and dynamic loading test, the displacement, strain, impact factor, and natural frequency values were measured and evaluated through analysis method. Result: The main results of this study are as follows. First, the maximum displacement and maximum strain of S1 were assessed at 2.917 mm and 44.720 𝜇ε( tensile) and -13.760 𝜇ε(compression), respectively, with S2 maximum displacement and maximum strain being 2.100 mm and 4.870 𝜇ε(tensile), respectively. Second, the maximum measured impact factor was 0.191 in section S1 A-A, and the maximum measured impact factor was 0.155 in section S2 C-C. Third, the natural frequency was assessed at 6.086 Hz, and the measurement was found to be within the range of 6.152 Hz to 6.738 Hz. Conclusion: The tested bridge may be evaluated to show good behavior and characteristics for the design load.