• Title/Summary/Keyword: Loading capacity

Search Result 2,036, Processing Time 0.026 seconds

Present Status and Future Aspects of Radiation Oncology in Korea (방사선 치료의 국내 현황과 미래)

  • Huh, Seung-Jae
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2006
  • $\underline{Purpose}$: An analysis of the infrastructure for radiotherapy in Korea was performed to establish a baseline plan in 2006 for future development. $\underline{Materials\;and\;Methods}$: The data were obtained from 61 radiotherapy centers. The survey covered the number of radiotherapy centers, major equipment and personnel. Centers were classified into technical level groups according to the IAEA criteria. $\underline{Results}$: 28,789 new patients were treated with radiation therapy in 2004. There were 104 megavoltage devices in 61 institutions, which included 96 linear accelerators, two Cobalt 60 units, three Tomotherapy units, two Cyberknife units and one proton accelerator in 2006. Thirty-five high dose rate remote after-loading systems and 20 CT-simulators were surveyed. Personnel included 132 radiation oncologists, 50 radiation oncology residents, 64 medical physicists, 130 nurses and 369 radiation therapy technologists. All of the facilities employed treatment-planning computers and simulators, among these thirty-two percent (20 facilities) used a CT-simulator. Sixty-six percent (40 facilities) used a PET/CT scanner, and 35% (22 facilities) had the capacity to implement intensity modulated radiation therapy. Twenty-five facilities (41%) were included in technical level 3 group (having one of intensity modulated radiotherapy, stereotactic radiotherapy or intra-operative radiotherapy system). $\underline{Conclusion}$: Radiation oncology in Korea evolved greatly in both quality and quantity recently and demand for radiotherapy in Korea is increasing steadily. The information in this analysis represents important data to develop the future planning of equipment and human resources.

A Study on Applicability of Tensile Constitutive Model of Steel Fiber Reinforced Concrete in Model Code 2010 (Model Code 2010에 제시된 강섬유 보강 콘크리트의 인장 구성모델 적용성 고찰)

  • Yeo, Dong-Jin;Kang, Duk-Man;Lee, Myung-Seok;Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.581-592
    • /
    • 2016
  • Tensile constitutive stress-strain model of steel fiber reinforced concrete (SFRC) in fib MC2010 was investigated. In order to model tensile behavior of SFRC, three point loading flexural tests were conducted on notched small beams according to BE-EN-14651. Design parameters for the constitutive model were determined from the flexural tests. Flexural test and finite element analysis were conducted on large SFRC beam without steel reinforcements and compared with each other. In addition, parametric study on the effect of compressive and tensile model, and characteristic length on flexural behavior of the SFRC beam was conducted also. In results, pre-peak load-displacement curves from the FE analysis was close to experimental curves but significant difference was shown in post-peak behavior. The reason of the difference is originated from the fact that the fiber distribution and orientation were not being properly considered in the MC2010 model. This study shows that modification and detail explanations on the orientation factor K in MC2010 might require to better reproduce the behaviour of large scale SFRC beams.

A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing (도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구)

  • Park, Hee Mun;Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.

Earthquake Resistance of Modular Building Units Using Load-Bearing Steel Stud Panels (내력벽식 스터드패널을 적용한 모듈러건물유닛의 내진성능)

  • Ha, Tae Hyu;Cho, Bong-Ho;Kim, Tae Hyeong;Lee, Doo Yong;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.519-530
    • /
    • 2013
  • Cyclic tests on modular building units for low-rise buildings composed of stud panels and a light-weight steel perimeter frame, were performed to evaluate the earthquake resistance such as stiffness, load-carrying capacity, ductility, and energy dissipation per load cycle. The strap-braced and sheeted stud panels were used as the primary lateral load-resistant element of the modular building units. Test results showed that the modular building units using the strap-braced and sheeted stud panels exhibited excellent post-yield ductile behaviors. The maximum drift ratios were greater than 5.37% and the displacement ductility ratios were greater than 5.76. However, the energy dissipation per load cycle was poor due to severe pinching during cyclic loading. Nominal strength, stiffness, and yield displacement of the modular building units were predicted based on plastic mechanisms. The predictions reasonably and conservatively correlated with the test results. However, the elastic stiffness of the strap-braced stud panel was significantly overestimated. For conservative design, the elastic stiffness of the strap-braced stud panel needs be decreased to 50% of the nominal value.

Experimental Study on Steel Beam with Embossment Web (엠보싱 웨브를 가지는 보 부재의 실험적 연구)

  • Park, Han-Min;Lee, Hee-Du;Shin, Kyung-Jae;Lee, Swoo-Heon;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.479-486
    • /
    • 2017
  • Steel beams with corrugated web have been widely used in the steel structures. However, it is challenging to weld the section between the corrugated web and the flange straight, which increases the cost of production. In order to solve this issue, steel beam with intaglio and embossed web (It is called an IEB) was invented. A web with embossment is produced by cold pressing and welded to flange by automatic welding machine. The loading tests were conducted to investigate the load-carrying capacity of IEB, and its test result was compared with that of H-shaped beam having a same size of flange and web. The test results of IEB series showed about 40% higher load capacities than H-shaped series. As a result of comparing the IEB specimen with Eurocodes for steel beams with corrugated web, all of specimens tested in this study did not meet the design value. Therefore, it is difficult to apply existing formula to IEB and new design formula should be presented for field application.

Improvement of Procedures for Reasonable Implementation of TMDL (수질오염총량관리제의 합리적인 시행을 위한 시행절차 개선방안)

  • Kim, Young-Il;Yi, Sang-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.617-622
    • /
    • 2011
  • The policy of total maximum daily load (TMDL) was introduced to manage wasteload within the loading capacity to achieve water quality standards in the watershed. While the TMDL was implemented, the institutional and technical correction for the improvement of procedure was accomplished even though there were various problems and basically through the process of trial & error. However, a fundamental improvement of this policy is needed to implement the TMDL. This study has come up with a new viewpoint on improving this procedure for reasonable implementation of TMDL. First of all, the water quality and flowrate monitoring of the tributaries should be implemented. This should be done through the establishment of a monitoring system which will include standards of scope, a set time period, water quality parameters and frequency follow ups for the implementation of TMDL. The basic plan in all of the watersheds should be developed based on the establishment of water quality parameters and standards for water use and ecological purposes according to the results of the water quality and flowrate monitoring in the watersheds. The implementation plan for water quality improvement should be established in the watersheds where exceeds the targeted water quality standards. The performance assessment of TMDL should be conducted every year to meet the satisfaction assessment of water quality standards in the watersheds. Finally, if the water quality standards in the watersheds can not be attained or the water quality parameters and standards should be changed, the implementation procedure will be performed according to the iterative process. On the contrary, the policy of TMDL in the watersheds where the water quality standards have been met the goal will be finished.

Investigation of Nanofiber and Thermosensitive Scaffold for Intervertebral Disc through Organ Culture (기관배양을 통한 추간판 재생용 나노파이버 및 온도 감응성 지지체에 대한 검증)

  • Lee, Yong-Jae;Shin, Ji-Won;Shin, Ho-Jun;Kim, Chan-Hwan;Park, Ki-Dong;Bae, Jin-Woo;Seo, Hyoung-Yeon;Kim, Young-Jick;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.512-519
    • /
    • 2007
  • The purpose of this study is to investigate the potential of a novel tissue engineering approach to regenerate intervertebral disc. In this study, thermosensitive scaffold (chitosan-Pluronic hydrogel) and nanofiber were used to replace the nucleus pulposus (NP) and annulus fibrosus of a degenerated intervertebral disc, leading to an eventual regeneration of the disc using the minimally invasive surgical procedure and organ culture. In preliminary study, disc cells were seeded into the scaffolds and cellular responses were assessed by MTT assay and scanning electron microscopy (SEM). Based on these results, we could know that tissue engineered scaffolds might provide favorable environments for the regeneration of tissues. Organ culture was performed in fresh porcine spinal motion segments with endplates on both sides. These spinal motion segments were classified into three groups: control (Intact), injured NP (Defect), and inserting tissue engineered scaffolds (Insert). The specimens were cultivated for 7 days, subsequently structural stability, cell proliferation and morphological changes were evaluated by the relaxation time, quantity of DNA, GAG and histological examination. In these results, inserting group showed higher relaxation time, reduced decrement of DNA contents, and accumulated GAG amount. Consequently, the tissue engineered scaffolds used in this study seen to be a promising base scaffolds for regenerative intervertebral disc due to its capacity to absorb external dynamic loading and the possible ideal environment provided for disc cell growing.

Variation of strength of soil matrix with artificially manipulating particle distribution of granular soil (인위적 입도조정에 따른 지반의 강도특성 변화)

  • Moon, Jun-Ho;Xin, Zhen-Hua;Kim, Gab-Boo;Moon, Sun-Mi;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 2018
  • In this study, an artificially formed Gap graded soil, designed to increase its shear strength, was analyzed to determine the strength parameters through direct shear tests. Uniform and fine grain size samples were compared to the Gap graded soil to investigate the increase in the shear strength. Plate loading tests were conducted using 13mm and 19mm aggregates to confirm the reproducibility of the strength enhanced samples for site application. This test confirmed that the particle size ratio and the internal friction angle are correlated to the shear strength, and the shear resistance angle significantly increased in the specific particle size ratio range. The calculation of the ultimate bearing capacity by the plate load test demonstrated that the grain size adjustment method greatly influences the strength increase rate. Therefore, the findings were verified and it was confirmed that a high shear strength is achievable despite the existence of a poor particle size distribution.

ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF AN IMMOBILIZED BACTERIUM PRODUCING N2 FROM NH4+ UNDER AN AEROBIC CONDITION

  • Park, Kyoung-Joo;Cho, Kyoung-Sook;Kim, Jeong-Bo;Lee, Min-Gyu;Lee, Byung-Hun;Hong, Young-Ki;Kim, Joong-Kyun
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.213-226
    • /
    • 2005
  • To treat wastewater efficiently by a one-step process of nitrogen removal, a new bacterial strain producing $N_2$ gas from ${NH_4}^+$ under an aerobic condition was isolated and identified. The cell was motile and a Gram-negative rod, and usually occurred in pairs. By 16S-rDNA analysis, the isolated strain was identified as Enterobacter asburiae with 96% similarity. The isolate showed that the capacity of $N_2$ production under an oxic condition was approximately three times higher than that under an anoxic condition. Thus, the consumption of ${NH_4}^+$ by the isolate was significantly different in the metabolism of $N_2$ production under the two different environmental conditions. The optimal conditions of the immobilized isolate for $N_2$ production were found to be pH 7.0, $30^{\circ}C$ and C/N ratio 5, respectively. Under all the optimum reaction conditions, $N_2$ production by the immobilized isolate resulted in reduction of ORP with both the consumption of DO and the drop of pH. The removal efficiencies of $COD_{Cr}$, and TN were 56.1 and 60.9%, respectively. The removal rates of $COD_{Cr}$, and TN were the highest for the first 2.5 hrs with the removal $COD_{Cr}/TN$ ratios of 32.1, and afterwards the rates decreased as reaction proceeded. For application of the immobilized isolate to a practical process of ammonium removal, a continuous operation was executed with a synthetic medium of a low C/N ratio. The continuous bioreactor system exhibited a satisfactory performance at 12.1 hrs of HRT, in which the effluent concentrations of ${NH_4}^+$-N was measured to be 15.4 mg/L with its removal efficiency of 56.0%. The maximum removal rate of ${NH_4}^+$-N reached 1.6 mg ${NH_4}^+$-N/L/hr at 12.1 hrs of HRT(with N loading rate of $0.08\;Kg-N/m^3$-carrier/d). As a result, the application of the immobilized isolate appears a viable alternative to the nitrification-denitrification processes.

Evaluation of Filter-Adsorber(F/A) Process for Removal of Disinfection By-products(DBPs) (소독부산물 제어를 위한 실공정 F/A 운영에 관한 고찰)

  • Kim, Seong-Su;Lee, Kyung-Hyuk;Lim, Jae-Lim;Chae, Seon-Ha;Kang, Byeong-Soo;Moon, Pil-Joong;Ahn, Hyo-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1035-1042
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. At S and B Water Treatment Plant, GAC is used in place of granular media in conventional rapid filters(GAC Filter-Adsorber) for removal of Disinfection By-products(DBPs). The primary focus of this study is on the performance of existing filter-adsorber, and their operation. It was found that F/A process removed turbidity as effective as sand system. The ratio of Hydrophobic DOM (HPO) and hydrophilic DOM (HPI) fraction in the raw water at S and B WTP was similar. Filter Adsorber presented earlier DOC breakthrough and steady state condition which was contributed by biodegradation during operation period. The removal efficiency of DBPs were used to evaluate the filter performance. The DBPs concentration of F/A treated water was below treatment goal level (THM < $80\;{\mu}g/L$, HAA < $60{\mu}g/L$). The removal efficiency of THM decreased rapidly during operation period. However, HAA were removed steadily regardless of the influent concentration of HAA. These results indicate that the removal of THM depend upon the adsorption mechanism while the removal of HAA depend upon biodegradation as well as adsorption. The decrease of adsorption capacity and characteristic value of GAC may be attributed to the effect of high organic loading, residual free chlorine, coagulants, manganese oxidants and frequently backwashing. This study has confirmed that Filter adsorber process can be considered as effective alternatives for the removal of DBPs, especially HAA.