• Title/Summary/Keyword: Loading History

Search Result 344, Processing Time 0.02 seconds

Prediction of Nonlinear Seismic Response (지진하중에 의한 구조물의 비선형 거동 예측)

  • Kim, Hee Joong
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.77-84
    • /
    • 1996
  • The structural members under seismic loading actually show inelastic behavior, so the inelastic responses should be calculated for the seismic design of structures or estimating the structural damage level. Although direct time history analysis may calculate the exact dynamic nonlinear responses for given ground motions, this approach involves a high computational cost and long period. Therefore, it should be developed the approach to estimate nonlinear responses for the practical purpose. The artificial earthquake accelerograms were generated to obtain the smoothed responses spectra, and the samples of generated accelerogram for each seismic event was used to examine average nonlinear response spectra. The stabilized response spectra for each earthquake event was used to evaluate the effects of various yield strength ratios, damping values and nonlinear hysteretic models. The approach, which can simply predict the nonlinear seismic responses of structures, was shown in this study.

  • PDF

Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material (압전재료를 이용한 위성체 구조물의 열 진동 제어)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

On the large plastic deformation of tubular beams under impact loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.463-474
    • /
    • 1995
  • When a tubular cantilever beam is loaded by a dynamic force applied transversely at its tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity and results in structural softening. A theoretical model is presented in this paper to analyze the deformation of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the hardening/softening M-${\kappa}$ relationship is introduced. The main interest is on the curvature development history and the deformed configuration of the beam.

Simulation of Line Heating Process by Finite Element Analysis (유한요소해석에 의한 선상가열 변형의 시뮬레이션)

  • I.S. Nho;J.G. Shin;K.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.75-83
    • /
    • 1995
  • As a basic research for the automation of plate forming process, the theoretical aspect of plate bending by line heating was surveyed and numerical simulation of plate bonding deformation was performed using the 3-dimensional nonlinear transient thermal elasto-plastic finite element analysis. Analyzing the unsteady heat conduction problem of the flat steel plate under heat flux input by gas torch, the time history of 3-dimensional thermal distribution was obtained. Transient thermal deformation process of the plate was analyzed under the thermal loading. And the calculated results are investigated in detail.

  • PDF

Sensitivity Analysis on the Seismic Responses of the Reactor Structures (원자로구조물의 지진응답 민감도해석)

  • Lee, J. H.;Kim, J. B.;Koo, G. H.;Kim, J. I.;Yoo, B.;Choi, S.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.183-190
    • /
    • 1993
  • The seismic response of the reactor structures depends on the dynamic charact-eristics of the structures and the input earthquake loadings. The stuctural integ-rity of the reactor internal components can be verified by the dynamic response analyses to implement the effects of the design loadings like earthquakes. The sensitivity analyses of the dynamic characteristics for the analytical model of reactor structures considering the possible variations of the stiffnesses of the CSB upper flange and the snubber were performed to improve the dynamic characteri-stics of the structures against seismic loading. And to enhance the structural design margin of the reactor internal components the nonlinear time history analyses were attempted for the modified analytical model, and the results were compared between the reference model and the modified ones.

  • PDF

An Experimental Study on Shear Strength of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (섬유보강 철근콘크리트 보의 전단강도에 대한 실험적 연구)

  • Hwang Hyun-Bok;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.371-374
    • /
    • 2005
  • The research reported in this paper provides the test results of eleven reinforced concrete beams strengthened with FRP composites. Three parameters were considered in this investigation: the amount of FRP composites, the types of bonding schemes(continuous sheets or strips), and the material types of FRP composites (Carbon or Glass). The experimental results indicated that because the rupture strain of FRP composites was relatively higher that the yield strain of steel bars, the RC beams strengthened with FRP composites failed due to concrete crushing before the FRP composites arrived at its rupture strain. The compatibility-aided truss model showed reasonable agreement between the predicted and experimental shear stress-strain curves of the beams throughout the entire loading history.

  • PDF

Ice impact on arctic gravity caisson (극지용 중력식 해양구조물의 유빙충격 해석)

  • Yu, Byung-Kun
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.52-59
    • /
    • 1987
  • 극 지역용 중력식 해양구조물의 설계시 고려되어야 할 문제중의 하나가 구조물의 유빙(ice)과 충돌시 야기되는 foundation붕괴 현상인데, 본 논문에서는 정적 해석을 위해 sliding 및 bearing failure 현상에 대하여만 연구하였고, 또한 동적 해석을 위하여 soil과ice의 특성으로부터 structure-ice-soil의 상호 작용 운동 방정식을 설정하여 구조물과 ice의변위, 속도, 가속도와 ice force와 soil force의 history를 시간영역 해법으로 풀었다. 한 예제로 Beaufort Sea의 37 feet수심과 granular soil 상태에서 구조물의 최대변위는 0.4 feet이고 가속도는 약 0.3kg이며 이때 구조물이 sliding에 대하여 안전하다는 것이 입증되었다.

  • PDF

Nonlinear Analysis of RC Panels under Cyclic Loadings (반복하중을 받는 철근콘크리트 판넬의 비선형 해석)

  • 곽효경;김도연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.182-189
    • /
    • 2000
  • This paper presents a simple and reliable constitutive model for predicting the nonlinear response of reinforced concrete subjected to general membrane loadings. Based on the concept of equivalent uniaxial strain, constitutive relations of concrete are presented in the axes of orthotropy. The behavior of cracked concrete is described by a system of orthogonal cracks, which follows the principal strain directions and rotates according to the loading history. Simple hysteretic rules defining the cyclic stress-strain curves of concrete and steel are used. In addition, the stiffness and strength degradation of cracked concrete is included in the formulation. Correlation studies between analytical results and experimental values from idealized shear panel tests are conducted with the objective to establish the validity of the proposed model.

  • PDF

New constructive model for structures soil

  • Zhang, Sheng;Li, Haichao;Teng, Jidong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.725-738
    • /
    • 2016
  • A theoretical study of the behavior of structured soils is presented herein. By introducing the effect of soil structure and loading history into the Cam Clay model, a new model was formulated. The concept of differing void ratios was modified to combine structural parameters and the over consolidation ratio, and an evolution law was proposed. Upon introducing the concept of the subloading yield surface, a new two-yield surface model was obtained. The predicted results were compared to the experimental data, demonstrating that the new model provided satisfactory qualitative modeling of many important features of structured soils.

Undrained solution for cavity expansion in strength degradation and tresca soils

  • Li, Chao;Zou, Jin-feng;Sheng, Yu-ming
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • An elastic-plastic solution for cavity expansion problem considering strength degradation, undrained condition and initial anisotropic in-situ stress is established based on the Tresca yield criterion and cavity expansion theory. Assumptions of large-strain for plastic region and small-strain for elastic region are adopted, respectively. The initial in-situ stress state of natural soil mass may be anisotropic caused by consolidation history, and the strength degradation of soil mass is caused by structural damage of soil mass in the process of loading analysis (cavity expansion process). Finally, the published solutions are conducted to verify the suitability of this elastic-plastic solution, and the parametric studies are investigated in order to the significance of this study for in-situ soil test.