• Title/Summary/Keyword: Loadability

Search Result 20, Processing Time 0.025 seconds

Fitness Sharing Particle Swarm Optimization Approach to FACTS Installation for Transmission System Loadability Enhancement

  • Chang, Ya-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • Proper installation of Flexible AC Transmission Systems (FACTS) devices in existing transmission networks can enable power systems to accommodate more power transfer with less network expansion cost. The problem to maximize transmission system loadability by determining optimal locations and settings for installations of two types of FACTS devices, namely static var compensator (SVC) and thyristor controlled series compensator (TCSC), is formulated as a mixed discrete-continuous nonlinear optimization problem (MDCP). For solving the MDCP, in the paper, the proposed method with fitness sharing technique involved in the updating process of the particle swarm optimization (PSO) algorithm, can diversify the particles over the search regions as much as possible, making it possible to achieve the optimal solution with a big probability. The modified IEEE-14 bus network and a practical power system are used to validate the proposed method.

Maximization of Transmission System Loadability with Optimal FACTS Installation Strategy

  • Chang, Ya-Chin;Chang, Rung-Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.991-1001
    • /
    • 2013
  • Instead of building new substations or transmission lines, proper installation of flexible AC transmission systems (FACTS) devices can make the transmission networks accommodate more power transfers with less expansion cost. In this paper, the problem to maximize power system loadability by optimally installing two types of FACTS devices, namely static var compensator (SVC) and thyristor controlled series compensator (TCSC), is formulated as a mixed discrete-continuous nonlinear optimization problem (MDCP). To reduce the complexity of the problem, the locations suitable for SVC and TCSC installations are first investigated with tangent vector technique and real power flow performance index (PI) sensitivity factor and, with the specified locations for SVC and TCSC installations, a set of schemes is formed. For each scheme with the specific locations for SVC and TCSC installations, the MDCP is reduced to a continuous nonlinear optimization problem and the computing efficiency can be largely improved. Finally, to cope with the technical and economic concerns simultaneously, the scheme with the biggest utilization index value is recommended. The IEEE-14 bus system and a practical power system are used to validate the proposed method.

Estimation of Maximum Loadability in Power Systems By Using Elliptic Properties of P-e Curve (P-e 곡선의 타원 특성을 이용한 전력계통 최대허용부하의 예측)

  • Moon, Young-Hyun;Choi, Byoung-Kon;Cho, Byoung-Hoon;Lee, Tae-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.22-30
    • /
    • 1999
  • This paper presents an efficient algorithm to estimate the maximum load level for heavily loaded power systems with the load-generation vector obtained by ELD (Economic Load Dispach) and/or short term load forecasting while utilizing the elliptic pattern of the P-e curve. It is well known the power flow equation in the rectangular corrdinate is jully quadratic. However, the coupling between e and f makes it difficult to take advantage of this quadratic characteristic. In this paper, the elliptic characteristics of P-e curve are illustrated and a simple technique is proposed to reflect the e-f coupling effects on the estimation of maximum loadability with theoretical analysis. An efficient estimation algorithm has been developed with the use of the elliptic properties of the P-e curve. The proposed algorithm is tested on IEEE 14 bus system, New England 39 bus system and IEEE 118 bus system, which shows that the maximum load level can be efficiently estimated with remarkable improvement in accuracy.

  • PDF

Loadability Analysis of Modular Fixtures based on a Configuration Space Approach (형상공간 접근 방식에 기반한 모듈식 고정쇠의 적재가능성 분석)

  • 유견아
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.398-406
    • /
    • 2003
  • In modular fixturing systems, a given part or a subassembly is fixed by placing fixture elements such as locators and clamps adequately on a plate with a lattice of holes. It is known that the minimal number of point contacts to restrict translational and rotational motions on a plane is four and the type of three locators and a clamp(3L/1C) is the minimal future. Brost and Goldberg developed the complete algorithm to automatically synthesize 3L/1C types of fixtures which satisfy the condition of form closure. Due to the nature of the fixture, the clearance between the fixture and the part is extremely small. It is hard to load the part repeatedly and accurately for human as well as for robot. However the condition of loadability has not been taken into account in the B&G algorithm. In this paper, a new method to decide a given fixture to be loadable by using configuration space is proposed. A method to plan for a part to be loaded by using compliance safely even in the presence of control and sensing uncertainty is proposed is well.

Strategy based PSO for Dynamic Control of UPFC to Enhance Power System Security

  • Mahdad, Belkacem;Bouktir, T.;Srairi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.315-322
    • /
    • 2009
  • Penetration and installation of a new dynamic technology known as Flexible AC Transmission Systems (FACTS) in a practical and dynamic network requires and force expert engineer to develop robust and flexible strategy for planning and control. Unified Power Flow Controller (UPFC) is one of the recent and effective FACTS devices designed for multi control operation to enhance the power system security. This paper presents a dynamic strategy based on Particle Swarm Optimization (PSO) for optimal parameters setting of UPFC to enhance the system loadability. Firstly, we perform a multi power flow analysis with load incrementation to construct a global database to determine the initial efficient bounds associated to active power and reactive power target vector. Secondly a PSO technique applied to search the new parameters setting of the UPFC within the initial new active power and reactive power target bounds. The proposed approach is implemented with Matlab program and verified with IEEE 30-Bus test network. The results show that the proposed approach can converge to the near optimum solution with accuracy, and confirm that flexible multi-control of this device coordinated with efficient location enhance the system security of power system by eliminating the overloaded lines and the bus voltage violation.

Improved Method of Maximum Loadability Estimation in Power Systems By Transforming the Distorted P-e Curve (왜곡된 P-e곡선의 변환에 의한 전력계통 최대허용부하의 향상된 추정 방법)

  • Hwang, Ji-Hwan;Choi, Byoung-Kon;Cho, Byoung-Hoon;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.363-365
    • /
    • 2000
  • This paper presents an improved method to estimate the maximum load level for heavily loaded power systems with the load-generation variation vector by using the elliptic pattern of the P-e curve. The previous study suggested a simple technique of removing e-f coupling, where only high voltage load flow solutions to calculate transforming angle of system reference is needed. The proposed algorithm is improved to require only one load flow solution at a specific load level in addition to the operating point at the beginning stage, which reduces the computation time and the iteration number of estimation. The proposed method can be efficiently applied to heaviIy loaded systems with the combination of CPFlow when the reactive power limit and ULTC are considered. In this paper, the effect of ULTC on the estimation of maximum loadability index is also investigated. The proposed algorithm is tested on New England 39 bus system and IEEE 118 bus system.

  • PDF

Estimation of Maximum Loadability in Power Systems By Using Elliptic Properties of P-e curve (P-e 곡선의 타원특성을 고려한 전력계통의 최대 허용부하의 예측)

  • Kim, Beom-Shik;Moon, Young-Hyun;Kwon, Yong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.347-349
    • /
    • 2005
  • This paper presents an efficient algorithm to estimate the maximum load level for heavily loaded power systems with the load-generation variation vector obtained by ELD (Economic Load Dispatch) and/or short term load forecasting while utilizing the elliptic pattern of the P-e curve. It is well known the power flow equation in the rectangular coordinate is fully quadratic. However, the coupling between e and f makes it difficult to take advantage of this quadratic characteristic. In this paper, a simple technique is proposed to reflect the e-f coupling effects on the estimation of maximum loadability with theoretical analysis. An efficient estimation algorithm has been developed with the use of the elliptic properties of the P-e curve. The proposed algorithm is tested on IEEE 14 bus system, New England 39 bus system and IEEE 118 bus system, which shows that the maximum load level can be efficiently estimated with remarkable improvement in accuracy.

  • PDF

UPFC Device: Optimal Location and Parameter Setting to Reduce Losses in Electric-Power Systems Using a Genetic-algorithm Method

  • Mezaache, Mohamed;Chikhi, Khaled;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Ensuring the secure operation of power systems has become an important and critical matter during the present time, along with the development of large, complex and load-increasing systems. Security constraints such as the thermal limits of transmission lines and bus-voltage limits must be satisfied under all of a system’s operational conditions. An alternative solution to improve the security of a power system is the employment of Flexible Alternating-Current Transmission Systems (FACTS). FACTS devices can reduce the flows of heavily loaded lines, maintain the bus voltages at desired levels, and improve the stability of a power network. The Unified Power Flow Controller (UPFC) is a versatile FACTS device that can independently or simultaneously control the active power, the reactive power and the bus voltage; however, to achieve such functionality, it is very important to determine the optimal location of the UPFC device, with the appropriate parameter setting, in the power system. In this paper, a genetic algorithm (GA) method is applied to determine the optimal location of the UPFC device in a network for the enhancement of the power-system loadability and the minimization of the active power loss in the transmission line. To verify our approach, simulations were performed on the IEEE 14 Bus, 30 Bus, and 57 Bus test systems. The proposed work was implemented in the MATLAB platform.

Assessment of Available Transfer Capability (ATC) considering Real-time Weather Conditions (실시간 기상상태를 고려한 가용송전용량 산정)

  • Kim, Dong-Min;Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.485-491
    • /
    • 2010
  • Total Transfer Capability (TTC) should be pre-determined in order to estimate Available Transfer Capability (ATC). Typically, TTC is determined by considering three categories; voltage, stability and thermal limits. Among these, thermal limits are treated mainly in this paper on the evaluation of TTC due to the relatively short transmission line length of Korea Electric Power Corporation (KEPCO) system. This paper presents a new approach to evaluate the TTC using the Dynamic Line Rating (DLR) for the thermal limit. Since the approach includes not only traditional electrical constraints but also real-time environmental constraints, this paper obtains more cost-effective and exact results. A case study using KEPCO system confirms that the proposed method is useful for real-time operation and the planning of the electricity market.

Optimal technique of cost function for FACTS operation in power system using Lagrange Multipliers (라그랑지 승수를 사용한 계통의 FACTS 기기 설치비용 함수의 최적화 기법)

  • Park Seong Wook;Baek Young Sik;Seo Bo Hyeok
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.15-17
    • /
    • 2004
  • The flexible AC transmissions system (FACTS) is the underpinning concept upon which are based promising means to avoid effectively power flow bottlenecks and ways to extend the loadability of existing power transmission networks. This paper proposes a method by which the optimal locations of the FACTS to be installed in power system under cost function. The optimal solution of this type of problem requires large scale nonlinear optimisation techniques. We used Lagrange multipliers to solve a nonlinear equation with equality and ineaquality constraints. Case studies on the standard IEEE 14 bus system show that the method can be implemented successfully and that it is effective for determining the optimal location of the FACTS

  • PDF