• Title/Summary/Keyword: Load-pull

Search Result 271, Processing Time 0.022 seconds

A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member (FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동 평가방법에 관한 연구)

  • Choi, So-Yoeng;Choi, Myoung-Sung;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.149-156
    • /
    • 2021
  • FRP has been proposed to replace the steel as a reinforcement in the concrete structures for addressing the corrosion issue. However, FRP-Rebar does not behave in the same manner as steel because the properties of FRP are different. For example, FRP-Rebar has a high tensile strength, low stiffness, and linear elastic behavior which results in a difference bonding mechanism to transfer the load between the reinforcement and the surrounding concrete. Therefore, bonding behavior between FRP-Rebar and concrete has to be investigated using the bonding test. So, Pull-out test has been used to estimate bond behavior because it is simple. However, the results of pull-out test have a difference with flexural-boding behavior of FRP-Rebar concrete member. So, it is needed to evaluate the real fleuxral-bonding behavior. In this study, the evaluation method to flexural-bonding behavior of FRP-Rebar concrete member was reviewed and compared. It was found that the most accurate evaluation method for the fleuxral-bonding behavior of FRP-Rebar concrete member was splice beam test, however, the size and length of specimen have to increase than other test method and the design and analysis of splice beam is complex. Meanwhile, characteristics of concrete could be reflected by using arched beam test, unlike hinged beam test which is based on the ignored change of moment arm length in equilibrium equation. However, the possibility of shear failure exists before the flexural-bonding failure occur.

Structural Performance Evaluation of Anchors for Power Equipment Electrical Cabinets Considering On-Site Installation Conditions (현장 설치 조건을 고려한 발전설비 전기 캐비닛 정착부 앵커의 구조성능 평가)

  • Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.709-719
    • /
    • 2023
  • In general, most of the electrical equipment responsible for control within power plants is housed in self-standing cabinets. These cabinets are typically fixed to a slab using post-installed anchors. Although the fixation method of using post-installed anchors provides stability, there is a risk of conductor failure due to external forces, including moments. However, the performance assessment of current anchors is only evaluated through uniaxial material tests. Therefore, the primary purpose of this study is to compare the static performance of post-installed anchors, considering on-site installation conditions, with their performance in material tests and to analyze the behavioral characteristics of the anchors. While conducting experiments using actual cabinets would be ideal, practical and spatial constraints make this approach difficult. As an alternative, experiments were conducted using a test specimen consisting of a steel column and a support. As a result, the pull-out performance of anchors reflecting on-site installation conditions was measured to be about 10% higher than that observed in material tests. The trends in load reduction and the point of maximum performance for the anchors also differed. To verify the reliability of the experimental study, a 3D FEM analysis was performed, which will provide predictive information on the loads transferred to the post-installed anchors for structural performance evaluations of electrical cabinets using shaking table test in the future.

Doherty Amplifier Using Load Modulation and Phase Compensation DGS Micro-Strip Line (부하 변조 및 위상 보상 DGS 마이크로스트립 선로를 이용한 도허티 증폭기)

  • Choi Heung-Jae;Lim Jong-Sik;Jeong Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.815-824
    • /
    • 2005
  • In this paper, we proposed a new DGS(Defected Ground Structure) Doherty amplifier for IMT-2000 band. Originally, active load-pull analysis of a Doherty amplifier assumes ideal harmonic termination condition. However, there have been no papers considering this ideal harmonic termination condition. We obtained excellent improvements of efficiency, gain, maximum output power as well as superior size reduction of a Doherly amplifier by satisfying the overlooked assumption of ideal harmonic termination through the adaptation of DGS at the output transmission line of carrier and peaking amplifier that is essential for Doherty operation. The amount of both the 2nd and the 3rd harmonic rejection of the proposed DGS Doherty amplifier over the conventional one are 44.92 dB and over 23.77 dB, respectively. The acquired improvement in Pl dB, gain, drain efficiency, and ACPR to WCDMA 1FA signal were 0.42 dB, 0.33 dB, $6.4\%$ and 5.4 dBc, respectively. Moreover, electrical length of $90{\circ}$ is reduced at each of the DGS carrier amplifier path and DGS peaking amplifier path, therefore the whole amplifier circuit size is considerably reduced.

Experimental Study for the Structural Stability of Permanent Anchor (영구 앵커의 구조적 안정성에 관한 실험적 연구)

  • Yoo, Nam-Jae;Park, Byung-Soo;Park, Chan-Deok;Hong, Young-Gil;Lee, Jong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.87-98
    • /
    • 2006
  • This paper is an experimental result of performing the prototype of anchor tests in field to investigate the ultimate uplifting capacity of permanent anchor embedded in weathered rock. For prototype of actual anchor test in situ, four grouted anchors having various anchor lengths were installed in field and their ultimate uplift capacities were obtained by analyzing test results of load-displacement curves obtained from field uplift tests. On the other hand, creep tests, applying pull-out loading at the stage of the maximum loading during 15 minutes, were performed to investigate ultimate resisting capacity of anchor so that the values of creep rate at the ultimate loading conditions were evaluated. Dial gauges were installed on the surface of ground to measure the vertical displacement distribution from the anchor so that the failure mechanism of permanent anchor embedded in weathered rock and failure boundary of ground during application of loading were evaluated.

Design & Fabrication of an InGaP/GaAs HBT MMIC Power Amplifier for IMT-2000 Handsets (IMT-2000 단말기용 InGaP/GaAs HBT MMIC 전력증폭기 설계 및 제작)

  • 채규성;김성일;이경호;김창우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.902-911
    • /
    • 2003
  • Using InGaP/GaAs HBT power cells with a 2.0${\times}$20$\mu\textrm{m}$$^2$ emitter area of a unit HBT, a two stage MMIC power amplifier has been developed for IMT-2000 handsets. An active-bias circuit has been used for temperature compensation and reduction in the idling current. Fitting on measured S-parameters of the HBT cells, circuit elements of HBT's nonlinear equivalent model have been extracted. The matching circuits have been designed basically with the extracted model. A two stage HBT MMIC power amplifier fabricated using ETRI's HBT process. The power amplifier produces an 1-㏈ compressed output power(P$\_$l-㏈/) of 28.4 ㏈m with 31% power added efficiency(PAE) and 23-㏈ power gain at 1.95 GHz in on-wafer measurement. Also, the power amplifier produces a 26 ㏈m output power, 28% PAE and a 22.3-㏈ power gain with a -40 ㏈c ACPR at a 3.84 ㎒ off-center frequency in COB measurement.quency in COB measurement.

Numerical Study on Designing Truncated Mooring Lines for FPSO Stability Analysis (FPSO 안정성 평가를 위한 절단계류선 모델링 수치 연구)

  • Kim, Yun-Ho;Cho, Seok-Kyu;Sung, Hong-Gun;Seo, Jang-Hoon;Suh, Yong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.387-395
    • /
    • 2014
  • In this paper, a numerical analysis for an internal turret moored vessel located at a 400-m water depth is conducted. The target vessel has an internal turret that is located at the 0.2 Lpp position from the fore-side, with $3{\times}4$ complex mooring lines installed around the turret circumference. To investigate the motion response of the vessel and the structural reliability of the lines, model tests were conducted. The KRISO ocean basin has a water depth of 3.2 m, which represents 192m using a scaling of 1:60. In order to precisely represent the real-scale condition, equivalent mooring lines needed to be designed. Truncated mooring lines were designed to supplement the restriction of the flume's water depth and increase the reliability of the model testing. These truncated mooring lines were composed of two different chains in order to match the pre-tension, simultaneously restoring the curve and variation in the effective line tension. The static similarities were compared using a static pull-out test and free decaying test, and the dynamic similarities were matched via a regular wave test and combined environments test. Consequently, the designed truncated mooring system could represent the prototype mooring system relatively well in the aspects of kinematics and dynamics.

Numerical simulations of progression of damage in concrete embedded chemical anchors

  • Sasmal, S.;Thiyagarajan, R.;Lieberum, K.H.;Koenders, E.A.B.
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.395-405
    • /
    • 2018
  • In this paper, the performance of post-installed adhesive bonded anchor embedded in concrete is assessed using numerical simulations. This study aims at studying the influence of parameters on the performance of a chemically bonded anchorage system. Non-linear finite element modelling and simulations are carried out by properly using the material properties and phenomenon. Materials parameters such as characteristic length, fracture energy, damage criteria, tension retention and crack width of concrete and interface characteristics are carefully assigned so as to obtain a most realistic behaviour of the chemical anchor system. The peak strength of two different anchor systems obtained from present numerical studies is validated against experimental results. Furthermore, validated numerical models are used to study the load transferring mechanism and damage progression characteristics of various anchors systems where strength of concrete, strength of epoxy, and geometry and disposition of anchors are the parameters. The process of development of strain in concrete adjacent to the anchor and energy dissipated during the course of damage progression are analysed. Results show that the performance of the considered anchorage system is, though a combined effect of material and geometric parameters, but a clear distinction could be made on the parameters to achieve a desired performance based on strength, slip, strain development or dissipated energy. Inspite the increase in anchor capacity with increase in concrete strength, it brings some undesirable performance as well. Furthermore, the pullout capacity of the chemical anchor system increases with a decrease in disparity among the strength of concrete and epoxy.

Tensile-Shear Fatigue Strength of Self-Piercing Rivets Joining Dissimilar Metal Sheets (이종재료 Self-Piercing Rivets 접합부의 인장-전단 피로강도)

  • Kang, Se Hyung;Kim, Taek Young;Oh, Man Jin;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • Self-piercing riveting (SPR) process is gaining popularity due to its many advantages. The SPR does not require a pre-drilled hole and has capability to join a wide range of similar or dissimilar materials and combinations of materials. This study investigated the fatigue strength of self-piercing rivet joint with aluminum alloy (Al-5052) and steel (SPCC) sheets. Static and fatigue tests on tensile-shear specimens were conducted. From the static strength aspect, the optimal punching force for the specimen with upper SPCC (U.S) sheet and lower aluminum alloy(L.A) sheets was 34 kN. During static test the specimens fractured in pull-out fracture mode due to influence of plastic deformation of joining area. There was a relationship between applied load amplitude $P_{amp}$ and number of cycles N ; $P_{amp}=19588N_f^{-0.211}$ and $P_{amp}=4885N_f^{-0.083}$ for U.S-L.A and U.A-L.S specimens, respectively. U.A-L.S fatigue specimens failed due to fretting crack initiation around the rivet neck between upper and lower sheets.

Material and Structural Characteristics of High Performance Permanent Form Using Stainless Steel Fiber (스테인레스 강섬유를 이용한 고성능 영구거푸집의 재료 및 구조적 거동특성에 관한 연구)

  • Sim, Jong-Sung;Oh, Hong-Seob;Ju, Min-Kwan;Kim, Kil-Jung;Shin, Hyun-Yang
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.73-82
    • /
    • 2006
  • Nowadays, the general stripping work of form has brought some problems; increase of total constructing cost resulted from the man-dependent form work procedure and environmental issues by wasting the debonded form. In this study, to effectively reduce unnecessary cost and resolve the environmental problems caused by these kinds of reason, a permanent form method using stainless steel fiber was introduced then its material and structural characteristics were evaluated. In the case of material characteristic, the permanent form had a good ductile behavior in the result of flexural test of the permanent form panel and pull-out test of insert bolt which is installed in the permanent form and perfect bonding capacity with a field concrete. In the case of structural characteristic, compressive and tensile behavior of the permanent form was evaluated. It also showed a good structural behavior in the view of load-deflection relationship, crack patterns and additional strengthening effect.

A Study on the Improvement of Military Information Communication Network Efficiency Using CCN (CCN을 활용한 군 정보통신망 효율성 향상 방안)

  • Kim, Hui-Jung;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.799-806
    • /
    • 2020
  • The rapid growth of smartphone-to-Internet of Things (IoT) connections and the explosive demand for data usage centered on mobile video are increasing day by day, and this increase in data usage creates many problems in the IP system. In a full-based environment, in which information requesters focus on information providers to receive information from specific servers, problems arise with bottlenecks and large data processing. To address this problem, CCN networking technology, a future network technology, has emerged as an alternative to CCN networking technology, which reduces bottlenecks that occur when requesting popular content through caching of intermediate nodes and increases network efficiency, and can be applied to military information and communication networks to address the problem of traffic concentration and the use of various surveillance equipment in full-based networks, such as scientific monitoring systems, and to provide more efficient content.