• Title/Summary/Keyword: Load-displacement

Search Result 2,773, Processing Time 0.031 seconds

Creep of Plate Anchors Embedded in Bentonite (Bentonite에 근입된 앵커의 Creep 특성)

  • Shin, B.W.;Lee, J.D.;Shin, J.H.;Lee, B.J.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.3-8
    • /
    • 1995
  • Anchors find their use in providing tie-back resistance for submerged footings, transmission towers, tunnels and ocean structures. Laboratory model teats were performed for the short-term net ultimate uplift capacity of a circular anchors with respect to various embedment depths and moisture content in saturated bentonite. The tests have been conducted with the anchor at two different moisture contents. Based an the model test results, empirical relationships between the net load, rate of strain, and time have been developed. Test results are as follows. 1) In creep tests for load versus ultimate uplift capacity, the displacement of plate anchors rapidly increases during the primary stage but thereafter becomes constant over a period of time. 2) Displacement increased with the increase of the sustain load and embedded ratio in soil. 3) If the load is less than or equal to 75% of the short-term ultimate uplift capacity, a complete pullout does not occur due to creep.

  • PDF

The Mechanical Behavior of Steel Circular Caisson by Horizontal Load (水平載荷에 따른 鋼製圓筒 케이슨의 力學的 擧動)

  • 장정욱
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.3
    • /
    • pp.141-150
    • /
    • 1998
  • Model tests were performed to examine the mechanical behavior of steel circular caisson by horizontal load. It was generally found that displacements and bottom pressure of the caisson model were increased rapidly at the local plastic load. The maximum displacement was measured at the loading point, whereas the less displacement was measured at the upper part of the caisson model. The bottom pressure was getting higher, as it was nearer the loading side. Furthermore, the increase ratio of the bottom pressure was higher as the load was increased.

  • PDF

A New Half-bridge Resonant Inverter with Load-Freewheeling Modes

  • Yeon, Jae-Eul;Cho, Kyu-Min;Kim, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.249-256
    • /
    • 2007
  • This paper presents a new circuit topology and its digital control scheme for a half-bridge resonant inverter. As the proposed half-bridge inverter can be operated in load-freewheeling modes, the pulse-width modulation (PWM) method can be used for the output power control. The proposed half-bridge inverter is based on the resonant frequency-tracking algorithm with the goal of maintaining the unity of the output displacement factor of the load impedance even in varying conditions. In this paper, the operation principle, electrical characteristics, and detailed digital control scheme of the proposed half-bridge resonant inverter are described. The experimental results of the prototype experimental setup to verify the validity of the proposed half-bridge inverter are presented and discussed.

Development of Displacement Estimation Technique for Bridges Located under Poor Measurement Circumstances (계측이 어려운 환경에 가설된 교량의 변위 추정 기술 개발)

  • Jeon, Junchang;Lee, Heehyun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.755-764
    • /
    • 2016
  • In this paper, to verify the field application of a displacement estimation technique based on the relationship between displacement and strain, static and dynamic field load test are performed on three-span continuous real bridge structures. The superstructure types of the test bridges are IPC girder highway bridge and steel box girder AGT bridge. LVDTs and strain gauges are attached to them; then, the responses due to test vehicle are measured. To obtain the displacement-strain relationship of the test bridges, the bridges are modeled as grillage system with 6 DOFs for the purpose of structural analyses. Static and dynamic displacements, which are estimated using both the calculated displacement-strain relationship and the measured strain signal, agree well with the values measured by LVDT. This study demonstrates that the displacement estimation technique using the strain signal can be effectively applied to the displacement measurement of bridge structures that cross rivers/roads/railways or have high clearance.

An Analytical Study on the Relationship between Factor of Safety and Horizontal Displacement of Soil Nailed Walls (쏘일네일 보강벽체의 수평변위와 안전율과의 관계 분석연구)

  • Kim, Hongtaek;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • Soil nailing method was often designed by the slope stability analysis based on limit equilibrium. However, in the case of shorten length of nails, although the calculated factor of safety is within the design factor of safety, the horizontal displacement of soil nailed walls occurred above the allowable limit. In this study, relationship between the load and factor of safety, and relationship between the load and displacement ratio based on the test results were analysed. From the analysed results, the relationship between factor of safety and displacement ratio was estimated. For the mobilized horizontal displacement of the walls within the serviceability limit corresponding to the displacement of less than 0.3% displacement ratio, the calculated factor of safety by limit equilibrium analysis had to satisfy above 1.35. Also, although the minimum factor of safety is estimated above 1.35, the maximum horizontal displacement is often mobilized above 0.3% of excavation height. Therefore, it is necessary to perform the numerical analysis of soil nailed walls in the case of low shear strength or high excavation.

Fragility curves for woodframe structures subjected to lateral wind loads

  • Lee, Kyung Ho;Rosowsky, David V.
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.217-230
    • /
    • 2006
  • This paper describes a procedure to develop fragility curves for woodframe structures subjected to lateral wind loads. The fragilities are cast in terms of horizontal displacement criteria (maximum drift at the top of the shearwalls). The procedure is illustrated through the development of fragility curves for one and two-story residential woodframe buildings in high wind regions. The structures were analyzed using a monotonic pushover analysis to develop the relationship between displacement and base shear. The base shear values were then transformed to equivalent nominal wind speeds using information on the geometry of the baseline buildings and the wind load equations (and associated parameters) in ASCE 7-02. Displacement vs. equivalent nominal wind speed curves were used to determine the critical wind direction, and Monte Carlo simulation was used along with wind load parameter statistics provided by Ellingwood and Tekie (1999) to construct displacement vs. wind speed curves. Wind speeds corresponding to a presumed limit displacement were used to construct fragility curves. Since the fragilities were fit well using a lognormal CDF and had similar logarithmic standard deviations (${\xi}$), a quick analysis to develop approximate fragilities is possible, and this also is illustrated. Finally, a compound fragility curve, defined as a weighted combination of individual fragilities, is developed.

Estimation of Displacements Using the Transformed Response in Time and Frequency Domain

  • Jung, Beom-Seok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.44-50
    • /
    • 2003
  • If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

  • PDF

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I) (직교 이방성체의 동적 응력확대계수에 관한 연구(I))

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

Variation Characteristics of Stiffness and Impact Resistance under Conastruction Height of Gypsum Board Wall (석고보드 벽체의 시공높이에 따른 수평하중저항성 및 내충격성 변동 특성)

  • Song, Jung Hyeon;Kim, Ki Jun;An, Hong Jin;Shin, Yun Ho;Ji, Suk Won;Choi, Soo Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.184-185
    • /
    • 2014
  • The purpose of this study is to experimentally evaluate the variation characteristics of stiffness and impact resistance under the construction height of gypsum board wall at the actual construction site. The method suggested in previous study was applied on the test method of horizontal load resistance and impact resistance. As a result of horizontal load resistance test, when the wall height is 2,400 mm, the maximum displacement is 13.6 mm and residual deformation is 0.5 mm, and when the wall height is 3,000 mm, the maximum displacement is 31.3 mm and the residual displacement is 6.8 mm. As a result of impact resistance test, the residual deformation of each specimen at 20 cm of fall height were 1.02 mm and 0.08 mm, respectively, the residual deformation at 40 cm of fall height were 1.58 mm and 0.35 mm, respectively, and the residual deformation at 60 cm of fall height were 2.23 mm and 2.48 mm, respectively.

  • PDF

Performance of cyclic loading for structural insulated panels in wall application

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.587-604
    • /
    • 2013
  • There are few technical documents regulated structural performance and engineering criteria in domestic market for Structural insulated panels in Korea. This paper was focused to identify fundamental performance under monotonic loading and cyclic loading for SIPs in shear wall application. Load-displacement responses of total twelve test specimens were recorded based on shear stiffness, strength, ultimate load and displacement. Finally energy dissipation of each specimen was analyzed respectively. Monotonic test results showed that ultimate load was 44.3 kN, allowable shear load was 6.1 kN/m, shear stiffness was 1.2 MN/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic loading results, which were equivalent to monotonic loading results, showed that ultimate load was 45.4 kN, allowable shear load was 6.3 kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. Based on results of structural performance test, it was recommended that the allowable shear load for panels should be 6.1 kN/m at least.