• Title/Summary/Keyword: Load-Pull

Search Result 272, Processing Time 0.022 seconds

Pull - out Capacity of Ground Anchor in Weathered Rock (풍화암 지반에 정착된 앵커의 인발저항 특성)

  • 이승환;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF

Pull-out Test of Pulse Powered Underreamed Anchors (펄스방전 확공형 앵커의 현장시험)

  • Kim, Nak-Kyung;Ju, Yonh-Sun;Kim, Sung-Kyu;Seo, Hyo-Kyun;Kim, Tae-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1014-1021
    • /
    • 2008
  • Ground anchor should not be used in soft clay, because anchor resistance can not be guaranteed. However, there is a way to increase the capacity of anchors. The pulse powered anchor is an underreamed anchor by using high voltage electrokinetic pulse energy. In this paper, conceptual introduction of the pulse powered anchor was presented. Anchor pull-out tests were performed at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea. Data were analyzed in order to verify the performance of pulse powered anchors.

  • PDF

Test Pattern Genration for Detection of Stuck-Open and Stuck-On Faults in BiCMOS Circuits (BiCMOS 회로의Stuck-Open 고장과 Stuck-On 고장 검출을 위한 테스트 패턴 생성)

  • 신재흥;임인칠
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.1
    • /
    • pp.1-11
    • /
    • 1997
  • A BiCMOS circuit consists of the CMOS part which performs the logic function, and the bipolar part which drives output load. In BiCMOS circuits, transistor stuck-open faults exhibit delay faults in addition to sequential beavior. Also, stuck-on faults enhanced IDDQ (quiscent power supply current) at steady state. In this paper, a method is proposed which efficiently generates test patterns to detect stuck-open faults and stuck-on faults in BiCMOS circuits. The proposed method divides the BiCMOS circuit into pull-up part and pull-down part, and generates test patterns detect faults occured in each part by structural property of the BiCMOS circuit.

  • PDF

A 22kW Bidirectional Three-Phase Push-Pull Converter for Wide Voltage Range Application (넓은 입력 전압 범위를 갖는 20kW급 양방향 3상 푸쉬풀 컨버터)

  • Le, Tat-Thang;Jeong, Hyeonju;Kim, Seon-Ju;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.8-10
    • /
    • 2019
  • In this paper, a bidirectional three-phase push pull converter is analyzed for the high power, wide voltage range applications. From comparison analysis of two switching methods: PWM plus phase-shift (PPS) and dual-asymmetric PWM (DAPWM) with the effect of dead-time, the proposed hybrid control is aimed to reduce the circulating current under wide voltage range operation. Value of leakage inductance effect to the peak current value, current stress and conduction loss in facing the load variation. Trade-off between power range and slew rate of transformer current was analyzed for properly selecting value of the transformer leakage inductance. Experimental results from a 22-kW prototype are provided to validate the proposed concept.

  • PDF

An Experimental Study on the Biomechanical Effectiveness of Bone Cement-Augmented Pedicle Screw Fixation with Various Types of Fenestrations

  • Yoon, Sang Hoon;Lee, Sang Hyung;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.779-789
    • /
    • 2022
  • Objective : To analyze the effects of the number and shape of fenestrations on the mechanical strength of pedicle screws and the effects of bone cement augmentation (BCA) on the pull-out strength (POS) of screws used in conventional BCA. Methods : For the control group, a conventional screw was defined as C1, a screw with cannulated end-holes was defined as C2, a C2 screw with six pinholes was defined as C3, and the control group type was set. Among the experimental screws, T1 was designed using symmetrically placed thru-hole type fenestrations with an elliptical shape, while T2 was designed with half-moon (HM)-shaped asymmetrical fenestrations. T3 and T4 were designed with single HM-shaped fenestrations covering three pitches and five pitches, respectively. T5 and T6 were designed with 0.6-mm and 1-mm wider fenestrations than T3. BCA was performed by injecting 3 mL of commercial bone cement in the screw, and mechanical strength and POS tests were performed according to ASTM F1717 and ASTM F543 standards. Synthetic bone (model #1522-505) made of polyurethane foam was used as a model of osteoporotic bone, and radiographic examinations were performed using computed tomography and fluoroscopy. Results : In the fatigue test, at 75% ultimate load, fractures occurred 7781 and 9189 times; at 50%, they occurred 36122 and 82067 times; and at 25%, no fractures occurred. The mean ultimate load for each screw type was 219.1±52.39 N for T1, 234.74±15.9 N for T2, 220.70±59.23 N for T3, 216.45±32.4 N for T4, 181.55±54.78 N for T5, and 216.47±29.25 N for T6. In comparison with C1, T1, T2, T3, T4, and T6 showed significantly different ultimate load values (p<0.05). However, when the values for C2 and the fenestrated screws were evaluated with an unpaired t test, the ultimate load value of C2 significantly differed only from that of T2 (p=0.025). The ultimate load value of C3 differed significantly from those of T1 and T2 (C3 vs. T1 : p=0.048; C3 vs. T2 : p<0.001). Linear correlation analysis revealed a significant correlation between the fenestration area and the volume of bone cement (Pearson's correlation coefficient r=0.288, p=0.036). The bone cement volume and ultimate load significantly correlated with each other in linear correlation analysis (r=0.403, p=0.003). Conclusion : Fenestration yielded a superior ultimate load in comparison with standard BCA using a conventional screw. In T2 screws with asymmetrical two-way fenestrations showed the maximal increase in ultimate load. The fenestrated screws can be expected to show a stable position for the formation of the cement mass.

Evaluation of Steel Pull-Out of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부 철근의 뽑힘 평가)

  • Woo, Jae-Hyun;Park, Jong-Wook;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.833-841
    • /
    • 2010
  • In this report, the test results of five reinforced concrete beam-column joint subjected to cyclic load are presented. The main purpose of the research is to investigate the influence of the steel pull-out of the beam-column joints to the shear and ductile capacity of the RC beam-column assembles. In addition, the influence of the amount of beam reinforcement to the joint shear and ductile capacity is evaluated. Test results indicate that the yield penetration of steel bar increases as the joint shear strength ratio, $V_{j1}/V_{jby}$ decreases. And the slippage of the steel bars are varied according to the region of the beam-column joints. The pull-out of the steel bars of five specimens was almost the same regardless of the joint shear strength ratio, $V_{j1}/V_{jby}$. Because it was affected by not only the yield penetration of steel bar but also the axial elongation in the plastic hinge.

Bonding Properties of Steel-reinforced Polymer Cement Mortar Evaluated by Pull-off Test and FEM Modeling (폴리머 시멘트 모르타르의 철근부착력 평가를 위한 인발실험과 모델링)

  • Park, Dong-Cheon;Yoneda, Nobutosi;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • Chloride attack to reinforced concrete structures located in seaside can cause a serious problem of durability and maintenance during the service life. Corrosion of reinforced steel bars in concrete decreases the bond strength and finally causes the detachment of concrete cover. Polymer cement mortar is usually adopted to repair the deteriorated RC structures because of its strong bonding property. The recovered load-carrying capacity after the repair was simulated by non-linear FEM analysis. The properties of concrete, repairing materials, bonding materials and reinforced bar were used as input data. Four types of redispersible polymer powders were used as components of polymer cement mortar. Pull-off tests were carried out to examine the bond properties such as rigidity and strength. Effects of a corrosion inhibitor and the loss of reinforced bars due to the corrosion were also considered in this study. FEM modeling and analysis were conducted to propose the universal model. Physical bonding in the relationship between repair materials and steel reinforced bar is more dominant than chemical bonding.

Lateral Earth Pressures and Displacements through Full Scaled Lateral Loading Test of Concrete Electric Pole Embedded in Ground (지중에 근입된 콘크리트전주의 실물 수평재하실험에 의한 수평토압과 변위특성)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.43-51
    • /
    • 2011
  • Many electric poles in the softground have been collapsed due to external load. In this study, 10 types of tests were performed with variation of location, numbers and depths of anchor blocks as well as depth of poles to find horizontal earth pressure through full scale pull-out tests. The horizontal earth pressure increased with embedded depth of electric pole, and earth pressure of lower passive zone decreased. The deeper of anchor block, earth pressure of passive zone becomes less. lateral displacements showed differences depending on location, numbers and depth of poles. The bending is generated in the upper part at the initial load, but it moved to central part as load increased. The maximum horizontal displacement decreased to 1/1.6 at -0.5m depth of anchor block and 1.3m additional laying depth of poles into ground.

Bond behavior between concrete and prefabricated Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) plates

  • Mansour, Walid;Sakr, Mohammed A.;Seleemah, Ayman A.;Tayeh, Bassam A.;Khalifa, Tarek M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.305-316
    • /
    • 2022
  • Externally bonded ultrahigh performance fiber-reinforced concrete (UHPFRC) is commonly used as a strengthening material for reinforced concrete (RC) structures. This study reports the results of an experimental program investigating the bonding behavior between concrete and prefabricated UHPFRC plates. The overall experimental program is consisting of five RC specimens, which are strengthened using the different lengths and widths of prefabricated UHPFRC plates. These specimens were analyzed using the pull-pull double-shear test. The performance of each strengthened specimen is presented, discussed and compared in terms of failure mode, maximum load, load-slip relationship, fracture energy and strain distribution. Specimen C-25-160-300 which bonded along the whole width of 160 mm recorded the highest maximum load (109.2 kN) among all the analysed specimens. Moreover, a 3D numerical finite element model (FEM) is proposed to simulate the bond behavior between concrete and UHPFRC plates. Moreover, this study reviews the analytical models that can predict the relationship between the maximum bond stress and slip for strengthened concrete elements. The proposed FEM is verified against the experimental program and then used to test 36 RC specimens strengthened with prefabricated UHPFRC plates with different concrete grades and UHPFRC plate widths. The obtained results together with the review of analytical models helped in the formation of a design equation for estimating the bond stress between concrete and prefabricated UHPFRC plates.

Development of Expert System for Operation in Distribution Systems with Graphic Integrated Environments (그래픽 통합 환경을 갖춘 배전계통 운용 전문가 시스템 개발)

  • Kim, Se-Ho;Seo, Ki-Sung;Kim, Jeong-Keun;Park, Byoung-Youn;Woo, Kwang-Bang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.960-972
    • /
    • 1992
  • This paper deals with the development of expert system in distribution system which combined with graphic user interface. The proposed expert system can recognize and adjust to the system change, and includes the rule bases of security monitoring. Also it provides load transfer algorithm for efficient load distribution. The graphic user environment for expert system is implemented in the mouse-oriented user interface with overlapped window functions and pull-down menus. Therefore, the developed graphic integrated expert system can afford to assist system operators very conveniently through the various graphic function in proposing an optimal plan of load transfer for fault restoration and outage schedule.