• Title/Summary/Keyword: Load types

Search Result 2,095, Processing Time 0.022 seconds

A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar (가스압접 이형철근의 기계적 강도 특성 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • Reinforcing bar splices are inevitable in reinforced concrete structure. In these days, there are three main types of splices used in reinforced concrete construction site - lapped splice, mechanical splice and welded splice. Low cost, practicality in construction site, less time consuming and high performance make gas pressure welding become a favorable splice method. However, reinforcing bar splice experiences thermal loading history during the welding procedure. This may lead to the presence of residual stress in the vicinity of the splice which affects the fatigue life of the reinforcing bar. Therefore, residual stress analysis and tensile test of the gas pressure welded splice are carried out in order to verify the load bearing capacity of the gas pressure welded splice. The reinforcing bar used in this work is SD400, which is manufactured in accordance with KS D 3504. The results show that the residual stresses in welded splice is relatively small, thus not affecting the performance of the reinforcing bar. Moreover, the strength of the gas pressure welded splice is high enough for the development of yielding in the bar. As such, the reinforcing bar with gas pressure welded splice has enough capacity to behave as continuous bar.

Evaluation of Combined Vertical and Horizontal Flow Zeolite-Filled Reed Bed with Intermittent Feeding for Sewage Treatment (직렬연결 수직 및 수평 흐름 갈대 제올라이트 인공습지에 의한 생활하수 처리)

  • Seo, Jeoung-Yoon
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.51-59
    • /
    • 2014
  • A sewage was treated using serially combined vertical and horizontal flow zeolite-filled reed bed. The sewage from the student dormitory of Changwon National University was fed into the reed bed for 10 minutes every 6 hours at the hydraulic load of 314 $L/m^2{\cdot}day$. The reed bed depth was 100cm and the zeolite mixture was filled in the reed bed. The mixture consisted of the same volume of two types of zeolite ; 0.5~1mm and 1~3mm in diameter. pH value decreased in vertical bed, while it increased in horizontal bed. But DO concentration in the effluent of both beds was higher than that in the influent. Average removal efficiencies of the entire treatment system were 99.22% SS, 95.56% BOD, 91.02% $COD_{Cr}$, 87.78% $COD_{Mn}$, 45.87% T-N, 99.88% $NH{_4}^+-N$ and 71.17% T-P. Most of T-N in the effluent was $NO{_3}^--N$. However, the concentration of $NO{_2}^--N$ in the effluent was lower than 0.04 mg/L. All removal efficiencies did not show a remarkable seasonal change.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

A Study to Improve the Spatial Data Design of Korean Reach File to Support TMDL Works (TMDL 업무 지원을 위한 Korean Reach File 공간자료 설계 개선 연구)

  • Lee, Chol Young;Kim, Kye Hyun;Park, Yong Gil;Lee, Hyuk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.345-359
    • /
    • 2013
  • In order to manage water quality efficiently and systematically through TMDL (Total Maximum Daily Load), the demand for the construction of spatial data for stream networks has increased for use with GIS-based water quality modeling, data management and spatial analysis. The objective of this study was to present an improved KRF (Korean Reach File) design as framework data for domestic stream networks to be used for various purposes in relation to the TMDL. In order to achieve this goal, the US EPA's RF (River Reach File) was initially reviewed. The improved design of the graphic and attribute data for the KRF based on the design of the EPA's RF was presented. To verify the results, the KRF was created for the Han River Basin. In total, 2,047 stream reaches were divided and the relevant nodes were generated at 2,048 points in the study area. The unique identifiers for each spatial object were input into the KRF without redundancy. This approach can serve as a means of linking the KRF with related database. Also, the enhanced topological information was included as attributes of the KRF. Therefore, the KRF can be used in conjunction with various types of network analysis. The utilization of KRF for water quality modeling, data management and spatial analysis as they pertain to the applicability of the TMDL should be conducted.

Buckling Behavior of Sandwich Composite Columns by Varying Hole Size and Hole Position (원공 크기 및 원공 위치에 따른 샌드위치 복합재 기둥의 좌굴 거동)

  • Lee, Sang-Jin;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The study investigated the buckling behavior of sandwich composite columns with different hole sizes and hole positions when they were applied to a compressive load. The columns consisted of 1.7mm thick faces of glass fabric/epoxy and 23mm, 37mm, 48mm, and 61mm thick cores of urethane-foam. Different hole sizes with the diameter of 25mm and 38mm were considered in this experiment. To evaluate the effect of hole position on the buckling behavior, we considered three types of hole position: 25mm diameter hole located at the center, 25mm diameter hole at 1/4 position from the center to the end of the column, and 25mm diameter hole at 1/2 position from the center to the end of the column. According to the results, buckling and maximum loads of the column having 25mm diameter hole were lower by 10% compared to those of the column without hole, whereas the loads for the column having 38mm diameter hole were 30% less than those of the column without hole. Hole position appeared to have no effect on buckling and maximum loads. Major failure modes were observed as follows: the core shear failure for the thin columns having 23mm and 37mm thick cores, and the face-core debonding for the thick columns having 48mm and 61mm thick cores.

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model (k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cheon, Seong S.
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) beam is composed of different stacking against loading type depending upon location. The aim of current study is to assign robust stacking sequences against external loading to every corresponding part of the PIC beam based on the value of stress triaxiality at generated reference points using the k-NN (k-Nearest Neighbor) classification, which is one of representative machine learning techniques, in order to excellent superior bending characteristics. The stress triaxiality at reference points is obtained by three-point bending analysis of the Al beam with training data categorizing the type of external loading, i.e., tension, compression or shear. Loading types of each plane of the beam were classified by independent plane scheme as well as total beam scheme. Also, loading fidelities were calibrated for each case with the variation of hyper-parameters. Most effective stacking sequences were mapped into the PIC beam based on the k-NN classification model with the highest loading fidelity. FE analysis result shows the PIC beam has superior external loading resistance and energy absorption compared to conventional beam.

The Investigation on the Behavior of Beam-Column Joint with High and Low Strength Concerte (고강도와 보통강도 콘크리트를 사용한 보-기둥 접합부의 구조적 거동)

  • 신성우;이광수;문정일;안종문;박희민;장일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.119-126
    • /
    • 1992
  • AC] 318-H9 Recommended that when the specified compressive strength of concrete in a column is greater than 1. 4 times that specified for a floor system, top surface of the colurrm concrete shall extend 2ftU;OOrrun) into the slab from the face of colUlml to avoid unexpected brittle failure. The purpose of this investigation is to suggest the basic information for the structural safety, The major variables are com preSSlve strength of concrete, shear confinement ratio, and loading types. The test results showed that the load capaCIty of speCImen subjected to monotOI1lC loading had more than that of specimen subjected to one way cyclic loading. The failure modes of specimens under cyclic loading were concentrated at 5-20cm apart region from beam-column joint face and ductility index are increased with increasing of shear confinement ratio. Keywords: ACI 318-89, High and Low Strength Concrete, Beam-Column Joint, Shear Confinement Ratio, Loading Type, Ductility Index, Extension Distance.

Static Load Tests on Flexural Strength and Crack Serviceability of a Longitudinal Joint for the Slab-Type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량 종방향 연결부의 휨강도 및 균열 사용성에 관한 정적재하실험)

  • Lee, Jung-Mi;Lee, Sang-Yoon;Song, Jae-Joon;Park, Kyung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.137-145
    • /
    • 2015
  • The slab-type precast modular bridge consists of the precast slab bridge modules which are connected in the transverse direction. The longitudinal joints between the precast slab bridge modules are filled with cast-in-place mortar. The construction of the slab-type precast modular bridge is completed by applying the prestressing force on the longitudinal joints. In this study, 4-points bending tests and 3-points bending tests were conducted to examine the effects of the prestressing force and the shape of joint on the flexural strength and crack serviceability of longitudinal joint. The results of 4-points bending tests showed that the flexural strength is affected by the prestressing force but not by the shape of join. From the results of 3-points bending tests by which the bending moment and the shear force are simultaneously applied on the joints of the specimens, it is observed that the shape of joint affects on the flexural strength and the crack behavior. The results of two types of bending tests confirmed that the prestressing force according to the design code is appropriate and the joint with two shear keys gives the better performances against the crack of joint.

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

A Study on Behavior Characteristics of Precast Coping Part under Axial Load (축하중을 받는 프리캐스트 코핑부의 거동 특성 연구)

  • Won, Deok-Hee;Lee, Dong-Jun;Kim, Seung-Jun;Kang, Young-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • Recently, bridge construction technology has made great progress from development of high performance materials and new bridge types. However, most technology are based on methods of cast-in-place and material cost saving. The method of cast-in-place concrete causes environmental damages and costumer complaints. Especially, under bad weather conditions, the construction can not proceed. To overcome these disadvantages, new construction methods were developed to reduce construction time. These methods are called precast method. Most prefabricated methods have been applied to superstructure constructions of bridges, but very minutely applied to substructure constructions. The most important agendas on precast method are light weight and transportability of the precasted members, because very strict transporting specifications exist for road transportation of the precasted members. For example, the weight and length of coping members may be larger than the available transporting vehicles. Although column is constructed by precast method to save construction time, if coping member is constructed by cast-in-place method, then the column construction time reduction becomes meaningless. Therefore, in this study, a new precast coping member and a connecting system of column-coping member are proposed. The proposed method is verified by analyzing their ultimate performance through analysis and experimental study.