• Title/Summary/Keyword: Load torque

Search Result 1,105, Processing Time 0.027 seconds

A Study on Independent Steering & Driving Control Algorithm for 6WS/6WD Vehicle (6WS/6WD 차량의 독립조향 및 구동 제어알고리즘에 관한 연구)

  • Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • Multi-axle driving vehicles that are used in special environments require high driving performance, steering performance, and stability. Among these vehicles, 6WS/6WD vehicles with middle wheels have structural safety by distributing the load and reducing the pitch angle during rapid acceleration and braking. 6WS/6WD vehicles are favored for military use in off road operations because of their high maneuverability and mobility on extreme terrains and obstacles. 6WD vehicles that using in-wheel motor can generate the independent wheel torque without other mechanical parts. Conventional vehicles, however, cannot generate an opposite driving force at each side wheel. Using an independent steering and driving system, six-wheel vehicles can show better performance than conventional vehicles. Using of independent steering and driving system, the 6 wheel vehicle can improve a performance better than conventional vehicle. This vehicle enhances the maneuverability under low speed and the stability at high speed. This paper describes an independent 6WS/6WD vehicle, consists of three parts; Vehicle Model, Control Algorithm for 6WS/6WD and Simulation. First, vehicle model is application of TruckSim software for 6WS and 6WD. Second, control algorithm describes the optimum tire force distribution method in view of energy saving. Last is simulation and verification.

A Study on Structural Safety and Fatigue Failure of End Mill (엔드밀의 구조적 안전과 피로 파단에 대한 연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.3
    • /
    • pp.17-22
    • /
    • 2014
  • The stress between work piece and end mill at the use of end mill at machining and the structural deformation due to the and the pressure are investigated by simulation analysis of three end mill models in this study. These results are achieved with structural and fatigue analyses. Model 1 has the deformation less than model 2 or model 3. As the maximum equivalent stress of model 1 is shown to become the least among all models, model 1 can endure the highest load by comparing with other models. It is useful to estimate the damage prevention and the durability by applying this study result into the design of end mill.

Design of Adaptive Controller for Efficiency Optimization of Induction Motors (유도전동기 효율의 최적화를 위한 적응제어기 설계)

  • Hwang, Young-Ho;Park, Ki-Kwang;Shin, In-Sub;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.293-294
    • /
    • 2007
  • This paper addresses the adaptive controller for efficiency optimization of induction motors. The paper describes an adaptive controller based on-line efficiency optimization control of a drive that uses a direct vector controlled induction motors. To improve the efficiency of the induction motors, it is important to find the optimal flux reference that minimize power loss. The proposed optimal flux reference is derived using a power loss function that is constructed with stator resistance losses, rotor resistance losses and core losses. The proposed sliding mode flux observer generates estimates the unmeasured rotor fluxes. An optimal efficiency controller has goal of maximizing the efficiency for a given speed and load torque. A simulation shows the effectiveness of the proposed technique.

  • PDF

The Implementation of a Discrete PI Speed Controller for an Induction Motor (유도전동기용 이상 PI형 속도제어기의 구성)

  • 김광배;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.1
    • /
    • pp.26-35
    • /
    • 1986
  • In this paper, non-linear state equations for a 3-phase, 220V, 0.4 KW, squirrel cage induction motor have been derived using the d-q transformation and then these equations have been linearized around an operating point by a small perturbation method. Root loci on the s-plane with repect to the changes of slip S and supply frequency f have been studied. Based on the above results, the derived linear state equations have been augmented to the 6th order, including the output velocity feedback and a discrete PI speed controller. Using the new state equations, stability regions on the Kp-Kl plane have been investigated for slip S and sampling time T. In designing a discrete PI controller, the coefficients Kp and Kl around the normal operating point (220V,1,692rpm,60Hz)have been chosen under the assumptions that each response to a perturbation input of reference speed and load torque be underdamped and dominated by a pair of complex poles. Step responses in the experimental system using an Intel SDK-86 and an optimized PWM inverter show satisfactory results that the maximum overshoots and damped frequency are well coincided with ones from the computer simulation.

  • PDF

Permanent Magnet Overhang Effect on the Characteristics in Brushless DC Motor (브러시리스 직류전동기 특성에 대한 영구자석 오버행 효과)

  • 전연도;약미진치;이주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.229-236
    • /
    • 2004
  • In this paper, the effect of permanent magnet overhang structure on the characteristics in Brushless DC motor has analyzed quantitatively. We classified the overhang structure as symmetric and asymmetric. 3D equivalent magnetic circuit network (EMCN) method which uses the permeance as the distributive variable is used for the efficient analysis of magnetic field. The overhang effect which increases the linkage flux at the stator is verified by comparison between overhang and no overhang structure. In addition, it is known that no load back electro motive force (EMF) is also increased due to the overhang effect. In case of asymmetric overhang structure, the ratio effect of the upper to lower overhang length on the magnetic forces is analyzed. Form the analysis results, the variation of the asymmetric overhang ratio has a significant effect on the axial magnetic force except the radial and tangential magnetic forces. The validity of the analysis results is also clarified by comparison between calculated results and measured ones such as back EMF and cogging torque.

Shifting Control Method for Automatic Transmission of PSD-Axle Forklift (PSD322-Axle형 지게차 자동변속기의 변속제어)

  • Kwon, Soon-Ki;Choi, Si-Young;Kwon, Gi-Ryung;Han, Seung-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.565-575
    • /
    • 2009
  • A forklift (also called a lift truck) is a powered industrial truck that is used to lift and transport materials. It has become an indispensable piece of equipment in manufacturing and warehousing operations. The modem forklift is equipped with automatic transmission to meet the requirement of loading and easy operation of the vehicle. This paper proposes the design of TECU(Transmission Electronic Control Unit) which is applied to PSD322-Axle transmission. Garofalo's control technique is generally used to the automatic transmission. We consider the work quality and market requirement that does not want to control engine throttle. This paper proposes new controller system which guarantees efficient speed changes with simple system. This new system does not control the engine throttle spontaneously. But it has the load of engine and vehicle as a maximum disturbance. The scope of the disturbance is limited to the stoll area of the torque converter. This paper proposes a ideal control commander that converges relative velocity of the input and ouput of a clutch into a zero. We design linear controller to execute the idea control commander. We applied the control algorithm to the forklift of PSD322-Axle type and the performance of this controller was verified.

  • PDF

A Study on Slow Rolling tire for Prediction of the Tire Forces and Moments (회전하는 타이어의 접지면 동특성 예측에 관한 연구)

  • 김항우;황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1997
  • It is known that tire plays an important role to the dynamic performances of a vehicle such as noise, vibration, ride and handling. Therefore, force and moment measurements have been a part of the traditional tire engineering process. In this paper, a computational analysis technique has been explored. A FE model is made to simulate inflation, vertical load due to the vehicle weight, and the slow rolling of a radial tire. A rigid surface with Coulomb friction is included in the model to simulate the slow rolling contact. The tire slip during the in-plane motion of the rigid surface is calculated. Results are presented for both lateral and vertical loads, as well as straight ahead free rolling. The calculated and measured tire slips are in good correlation. A Study on slow Rolling Tire for perdiction of tire Forces and Moments.

  • PDF

Simple Al Robust Digital Position Control of PMSM using Neural Network Compensator (신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어)

  • Ko, Jong-Sun;Youn, Sung-Koo;Lee, Tae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.557-564
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system can be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. In addition, the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Signal Processor DS1102 Board (TMS320C31).

  • PDF

Finite element analysis of reinforced concrete spandrel beams under combined loading

  • Ibraheem, O.F.;Bakar, B.H. Abu;Johari, I.
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.291-308
    • /
    • 2014
  • A nonlinear, three-dimensional finite element analysis was conducted on six intermediate L-shaped spandrel beams using the "ANSYS Civil FEM" program. The beams were constructed and tested in the laboratory under eccentric concentrated load at mid-span to obtain a combined loading case: torsion, bending, and shear. The reinforcement case parameters were as follows: without reinforcement, with longitudinal reinforcement only, and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions: T/V = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). The failure of the plain beams was brittle, and the addition of longitudinal steel bars increased beam strength, particularly under low eccentricity. Transverse reinforcement significantly affected the strength at high eccentricities, that is, at high torque. A program can predict accurately the behavior of these beams under different reinforcement cases, as well as under different ratios of combined loadings. The ANSYS model accurately predicted the loads and deflections for various types of reinforcements in spandrel beams, and captured the critical crack regions of these beams.

Yoke Shape Design of Claw-Poles Stepping Motor Using Modified Magnetic Equivalent Circuit Method Including Magnetic Saturation Effect and Leakage Flux (자기 포화와 누설자속이 고려된 자기등가회로법을 이용한 클로우 폴 스테핑 모터의 요크 형상 설계)

  • Lee, Hyung-Woo;Cho, Su-Yeon;Bae, Jae-Nam;Son, Byoung-Ook;Park, Kyoung-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1942-1946
    • /
    • 2009
  • This paper presents a shape design process of Claw-Poles Stepping Motor(CPSM) using Modified Magnetic Equivalent Circuit Method(MMEC). Because this motor is adopted on low power devices, the motor size is a very small type. But it have a very strong permanent magnet. So magnetic saturation effect happens on yoke teeth of CPSM. Also this magnetic saturation effect causes more leakage flux component between yoke tooth have another pole. In this motor type, it is essential to design a shape of yoke teeth for avoiding the magnetic saturation effect and the leakage flux. In this paper, MMEC including the magnetic saturation effect and the leakage flux component was used for design process. Comparing with data calculated by using the MMEC and results analyzed by 3-D FEM, it could be stated that the design process with MMEC was reasonable. Finally, the model has the optimized shape of yoke teeth was compared with a conventional model for no-load Back EMF and torque at steady-state operation.