• Title/Summary/Keyword: Load testing

Search Result 1,270, Processing Time 0.03 seconds

Evaluating the pull-out load capacity of steel bolt using Schmidt hammer and ultrasonic pulse velocity test

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • Steel bolts are used in the construction industry for a large variety of applications that range from fixing permanent installations to temporary fixtures. In the past much research has been focused on developing destructive testing techniques to estimate their pull-out load carrying capacity with very little attention to develop non-destructive techniques. In this regards the presented research work details the combined use of ultrasonic pulse velocity and Schmidt hammer tests to identify anchor bolts with faculty installation and to estimate their pull-out strength by relating it to the Schmidt hammer rebound value. From experimentation, it was observed that the load capacity of bolt depends on its embedment length, diameter, bond quality/concrete strength and alignment. Ultrasonic pulse velocity test is used to judge the quality of bond of embedded anchor bolt by relating the increase in ultrasonic pulse transit time to the presence of internal pours and cracks in the vicinity of steel bolt and the surrounding concrete. This information combined with the Schmidt hammer rebound number, R, can be used to accurately identify defective bolts which resulted in lower pull-out strength. 12 mm diameter bolts with embedment length of 70 mm and 50 mm were investigated using constant strength concrete. Pull-out load capacity versus the Schmidt hammer rebound number for each embedment length is presented.

Lubrication Characteristics of High-Speed Ball Bearing with Oil-Jet Lubrication (Oil-Jet 윤활시 가스터어빈용 고속 Ball Bearing 윤활특성)

  • 김기태
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.28-34
    • /
    • 1996
  • The lubrication characteristics of high-speed ball bearings have been investigated empirically using 45mm bore split inner ring ball bearings employed in small industrial gas turbine engines with oil-jet lubrication method. For the close structural simulation, experiments carried out with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be directly applied to the design and the development of gas turbine engines. Testing was done by varying operating speeds, axial load on bearings, and lubricant flow rates. During testing, the temperature of bearing at outer-ring face, the power consumption of the driving motor, and the rotating resistance of the bearing were measured. From this study, the representative factors for lubrication characteristics at high speed was found, and the most important one was not operating speed but axial load up to 1.95 million dmN speed and 2969 N axial load. Furthermore, the detailed variation of the rotational resistance of the bearing could be visualized by measuring the change of the radial load under the bearing supports. The rotational resistance consists of the frictional resistance and the bearing-cavity oil resistance.

Fatigue Strength Evaluation of the Aluminum Car body of Urban Transit Unit by Large Scale Dynamic Load Test (도시철도차량 알루미늄 차체의 동적 하중 시험에 의한 피로 강도 평가)

  • Seo, Sung-Il;Park, Choon-Soo;Shin, Byung-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1051-1055
    • /
    • 2003
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Structural integrity assessment for the carbody by static load test has been performed up to date. In this study, to evaluate fatigue strength of the aluminum carbody of urban transit unit. a testing method to simulate dynamic loading condition was proposed and the fatigue strength of the carbody was evaluated. The dynamic load test results showed that the alternating stress ranges were different from the estimated ranges based on the static test results. Excessive stress ranges at the center are thought to come from the flexible motion of the carbody. published fatigue test data for aluminum components, but variation of alternating acceleration along the length due to flexibility of carbody yielded unexpected results. Because fatigue strength based on the static test results may be overestimated at the center, modification of testing method is necessary.

  • PDF

Load-deflection analysis prediction of CFRP strengthened RC slab using RNN

  • Razavi, S.V.;Jumaat, Mohad Zamin;El-Shafie, Ahmed H.;Ronagh, Hamid Reza
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.91-102
    • /
    • 2015
  • In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six reinforced concrete slabs having dimension $1800{\times}400{\times}120mm$ with similar steel bar of 2T10 and strengthened using different length and width of CFRP were tested and compared with similar samples without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as neuron in output layer. The network was generated using feed-forward network and a internal nonlinear condition space model to memorize the input data while training process. From 122 load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The results of model on the testing stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and experimental output was in the range of 0.99 to 1.11.

Oil-Jet Ball 윤활시 가스터빈용 고속 Ball Bearing 윤활특성

  • 김기태;권우성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.86-93
    • /
    • 1996
  • The lubrication characteristics of high-speed ball bearings has been investigated empirically using 45mm bore split inner ring ball bearings employed in small industrial gas turbine engines with oil-jet lubrication method. For the close structural simulation, experiments carried out with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be directly applied to the design and the development of gas turbine engines. Testing was done by varying operating speeds, axial load on bearings, and lubricant flowrates. During testing, the temperature of bearing at outer-ring face, the power consumption of the driving motor, and the rotating resistance of the bearing were measured. From this study, the representative factors for lubrication characteristics at high speed was found, and the most important one was not operating speed but axial load up to 1.95 million dmN speed and 303 kgf axial load. Furthermore, the detailed variation of the rotational resistance of the bearing could be visualized by measuring the change of the radial load under the bearing supports. The rotational resistance consists of the frictional resistance and the bearing-cavity oil resistance.

  • PDF

A Study on the Measuring Accuracy of Ultrasonic Hardness Tester (초음파 경도계의 측정정도에 관한 연구)

  • Han, Eung-Kyo;Yoon, Jong-Hak;Kim, Jae-Yeor
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 1987
  • In recent days, the application of ultrasonics has been increased in the field of engineering and medicine. The ultrasonic hardness tester to apply the principle of contact compliance method is entirely different from hardness tester in the past and in the practical use, the more pre- cisive measurement is required because it has a slight change of hardness value due to the difference of resonance frequency. Therefore, in this study, as one type of applicative transducers which can detect the optimum pressure load, ring type load cell was used in the measurement of ultrasonic hardness. From experimental results, it was compared ultrasonic hardness testing method with the other hardness testing methods. Also, the measurement error of ultrasonic hardness tester could be measured within .+-. 0.5 HRC F.S. in the case of 3.0Kg pressure load.

  • PDF

An Investigation of Fracture Mechanism of Spheroidal Graphite Cast Iron by Acoustic Emission Method (AE방법에 의한 구상화흑연(球狀化黑鉛) 주철재의 파괴기구 구명(究明))

  • Kim, S.C.;Ham, K.C.;Oh, B.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.6 no.2
    • /
    • pp.17-36
    • /
    • 1987
  • In this experimental research, fracture mechanisms of spheroidal graphite cast iron (As Cast, annealed and normalized) were investigated by using Acoustic Emission (AE) technique. In this study, the data (AE signal) are digitized and processed with the 8 bits micro-computer (APPLE II) connected to the AE measuring device without data processing unit. The source of AE signal was estimated by fractography analysis. The results obtained in this experimental study are summarized as follows : For the heterogeneous materials (spheroidal graphite cast iron) with inclusions which may considered as cracks, it is found that low and high AE amplitude appear simultaneously and the load is found to be fluctuated in the final stage of deformation. But the lad is not fluctuated in tension test with low AE amplitude only. AE is measured within elastic region and it is confirmed that 0.2% offset yield load agrees approximately with the load point where AE counts decrease steeply after the point of maximum AE counts.

  • PDF

Development of Falling Weight Deflectometer for Evaluation of Layer Properties of Flexible Pavement (도로포장 구조체의 물성 추정을 위한 FWD의 설계 및 제작)

  • 황성호;손웅희;최경락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.124-130
    • /
    • 2003
  • Many structural evaluation procedures of road and airfield pavements use the Falling Weight Deflectometer (FWD) as a critical element of non-destructive deflection testing. FWD is a trailer mounted device that provides accurate data on pavement response to dynamic wheel loads. A dynamic load is generated by dropping a mass from a variable height onto a loading plate. The magnitude of the load and the pavement deflection are measured by a load celt and geophones. And database concerning pavement damage should be enhanced to analyze loss of thickness asphalt layer caused from the plastic deformation of pavement structure, such as cracking or rutting. The prototype FWD is developed, which consists of chassis system, hydraulic loading system, data acquisition and analysis system. This system subsequently merged to from automation management system and is then validated and updated to produce a working FWD which can actually be used in the field.

S-N Curve Estimation of a KTX Structure for an Accelerated Life Testing (가속수명시험을 위한 KTX 구조물의 S-N 선도 추정)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Su-Han
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.384-389
    • /
    • 2008
  • An accelerated fatigue test is essentially required to maintain the reliability of the actual structure of KTX under operation conditions. However, actual fatigue life cannot be obtained if specimens are not adequate to the conventional fatigue test. Moreover component maker did not provide data of loading stress (S) - cycles at the failure (N). In this study, we suggest a prediction method of the S-N curve for establishing an accelerating test under various load levels. Load history was acquired from the field tests. A Rainflow method was used on the cycle counting of the field load data, and then, an S-N curve was obtained through the iteration process under the condition that the damage index satisfies to 1 in the Miner's rule.

  • PDF

Development of a Micro Tensile Tester for the Material Characterization and the Reliability Estimation of Micro Components (마이크로 부품의 물성 및 신뢰성 평가를 위한 시험기 개발)

  • 이낙규;최석우;임성주;최태훈;이형욱;나경환
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • This paper is concerned with development of a micro tensile testing machine for optical functional materials such as single or poly crystal silicon and nickel film. Two micro tensile testers have been developed for various types of materials and dimensions. One of the testers is actuated by a PZT and the other is actuated by a servo motor for a precise displacement control. The specifications of PZT actuated micro tensile tester developed are as follows: the volumetric size of tester is desktop sized of 710$\times$200$\times$270 $mm^3$; the minimum load capacity and the load resolution in the load cell of 1N are 3 mN and 0.1 mN respectively; the full stroke and the stoke resolution of piezoelectric actuator are 1 mm and 10nm respectively. A special automatic specimen installing equipment is applied in order to prevent unexpected deformation and misalignment of specimens during handling of specimen for testing.

  • PDF