• Title/Summary/Keyword: Load stress factor

Search Result 637, Processing Time 0.028 seconds

The Variation of Stress Concentration Factor and Crack Initiation Behavior on the Hole Defects Around the Rivet Hole in a Aircraft Materials (항공재료 리벳홀에 인접한 원공결함의 위치에 따른 응력집중계수의 변화와 균열발생거동)

  • Song, Sam-Hong;Kim, Cheol-Woong;Kim, Tae-Soo;Hwang, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.381-388
    • /
    • 2003
  • The material deficiencies in the form of pre-existing defects can initiated cracks and fractures. The stress distribution and fatigue crack initiation life of engineering materials may be associated with the size, the shape and the relative location of defects contained in the component. The objective of this study is to investigate the effect of arbitrarily located hole defect around the rivet hole of a wing section in monolithic aluminum and Al/GFRP laminates under cyclic bending moment during a service load. The stress distribution and the fatigue crack initiation behavior near a rivet hole of on the relationships between stress concentration factor ($K_t$) and relative position of defects were considered. The test results indicated the features of different stress field. Therefore, the stress concentration factor ($K_t$) and the fatigue crack initiation behavior was illustrated different behavior according to each position of hole defect around the rivet hole in monolithic aluminum and Al/GFRP laminates.

  • PDF

A Study on the Computation of Overload Probability Based on Bridge Load Rating Factor (교량내하력 값에 기초한 초과하중 확률 계산에 관한 연구)

  • Yang, Seung-Ie;Kim, Jin-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.125-134
    • /
    • 2003
  • In order to rate current bridge load carrying capacity, typically two methods are used. These are Allowable Stress Rating (ASR) and Load Factor Rating (LFR). Using the rating factors, there are many attempts to make a connection between rating factors and probability concept. The main purpose of the paper is computing the probability of overload using rating factors and probability concept. In this paper, the load rating methods are briefly explained, and the probability concept is connected to rating factors by using live load from Weigh-in-Motion (WIM). Based on the live load model and rati ng factor, the computation procedure of the probability of overload is explained.

A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints (기계적 체결부 균열의 피로균열성장에 관한 연구)

  • 허성필;양원호;정기현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

The Effect of Two Circular Holes Arrangement on the Stress Concentration Factor in a Semi-infinite Plate (양무한평판의 두 원공비렬이 응력집중에 미치는 영향)

  • 오세욱;박영철;김준영
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.110-119
    • /
    • 1990
  • This study is concerned about the stress concentration factor measurement by photoelastic method, for the case of two circular holes arrangement in 3mm semi-infinite plate under tensile load, the ratio of those two circular holes diameter, the ratio of distance apart from circular holes to breadth and the two holes arrangement angle with loading direction were varied. Besides, the measured stress concentration by photoelastic method around one circular hole was compared with that by strain-gage method.

  • PDF

Determination of Stress Intensity Factor for the Crack in Anisotropic Solids Using the Finite Element Method (유한요소법에 의한 이방성재료내 균열의 응력확대계수 결정)

  • Lim, W.K.;Jin, Y.K.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.234-239
    • /
    • 2001
  • The stress intensity factors have been widely used in numerical studies of crack growth direction. However in many cases, omissive terms of the series expansion are quantitatively significant, so we consider the computation of such terms. For this purpose, we used the finite element method with isometric quadratic quarter-point elements. For examples, infinite square plate with a slant crack subjected to a uniaxial load is analyzed. The numerical analysis were performed for the wide range of crack tip element lengths and inclined angles. The numerical results obtained are compared with the theoretical solutions. Also they were accurate and efficient.

  • PDF

Corrosion Fatigue Characteristics in the Weld of Multi-Pass Welded A106 Gr B Steel Pipe

  • Bae, Dong-Ho;Kim, Chul-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.114-121
    • /
    • 2004
  • In order to investigate the corrosion fatigue characteristics in the weld of multi-pass welded A 106 Gr B steel pipe, corrosion fatigue tests were performed under the various stress ratios and 3.5 wt% NaCl solution at room temperature. The corrosion fatigue characteristic curves were represented using crack closure concept. The obtained results are as follows : when the load frequency is 1.0 Hz, the crack opening point is transited in the region of $K_{max}$=20∼32 MPaㆍ $m^{1}$2/. In the low stress intensity factor range, the crack opening point is higher than that in air. However, in the high stress intensity factor range, it is lower than that in air. In the cases of 0.1 Hz and 0.01 Hz, the crack opening point gradually decreases to $K_{min}$ with $K_{max}$ increase.rease.

Crack-contact problem for an elastic layer with rigid stamps

  • Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.285-296
    • /
    • 2011
  • The plane crack-contact problem for an infinite elastic layer with two symmetric rectangular rigid stamps on its upper and lower surfaces is considered. The elastic layer having an internal crack parallel to its surfaces is subjected to two concentrated loads p on its upper and lower surfaces trough the rigid rectangular stamps and a pair of uniform compressive stress $p_0$ along the crack surface. It is assumed that the contact between the elastic layer and the rigid stamps is frictionless and the effect of the gravity force is neglected. The problem is reduced to a system of singular integral equations in which the derivative of the crack surface displacement and the contact pressures are unknown functions. The system of singular integral equations is solved numerically by making use of an appropriate Gauss-Chebyshev integration formula. Numerical results for stress-intensity factor, critical load factor, $\mathcal{Q}_c$, causing initial closure of the crack tip, the crack surface displacements and the contact stress distribution are presented and shown graphically for various dimensionless quantities.

ANALYSIS FOR 3-POINT LOADED DISC BY PHOTOELASTICITY (3점 압축하중을 받는 원판의 광탄성 해석)

  • 함경춘;이하성
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1992
  • Disc specimen with the center crack and edge crack simulated by two-dimensional static method is used to analyze the stress field around the crack tip in terms of the stress intensity factor, K. A simple and convenient method of testing to realize the mifed mode stress intensity factor of the cracked body is used, The conclusions obtatined in this photoelastlc analysis are as follows ; 1. According to this experiment, cracked disc specimen can be used to demonstrate the mixed mode stress intensity factor analysis by simply changing the crack angle from the loading line. 2. Despite the simplicity and continuous data reading, the photoelastic method shows the slightly lower strain reading comparing to the FEM analysis method. 3. In this photoelastic analysis, $K_{I}$ of center cracked disc specimen under a pair of compressive load shows negative value as the crack angle increases over 30$^{\circ}$.

  • PDF

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Assessment of Safety and Load Carrying Capacity of Aged Jacket-Typed Dolphin by Ship-Impact Test (선박접안시험을 통한 자켓식 돌핀부두의 내하력 평가 방법 연구)

  • Jo, Byung-Wan;Kwon, Oh-Hyuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.9-18
    • /
    • 1998
  • An improved evaluation method of load-carrying capacity for the large-scaled offshore structures, which subjected to the axial force and bending moments simultaneously at the piles, was suggested with reliability analysis and advanced working stress method. Reliability analysis requires the fracture probability and safety factor(${beta}$) for each of forces and the load-carrying capacity due to combined action of axial force and bending moments from $P_n - {beta}$ Curve. The combined equation due to those forces, which suggested by the Korean Specification for the marine structure, was derived for the advanced working stress method and applied to evaluate the load-carrying capacity of jacket-type dolphin piers.

  • PDF