• 제목/요약/키워드: Load prediction equations

검색결과 89건 처리시간 0.02초

Inelastic Out-of-plane Design of Parabolic Arches

  • Moon, Jiho
    • International Journal of Railway
    • /
    • 제8권2호
    • /
    • pp.46-49
    • /
    • 2015
  • In this paper, improved out-of-plane design of parabolic arches was proposed based on the current design code. The arches resist general loading by a combination of axial compression and bending actions, and the interaction formula between two extreme cases of axial and bending actions is generally used for the design. Firstly, the out-of-plane buckling strength of arches in a pure axial compression and a pure bending were studied. Then, out-of-plane design of parabolic aches under general transverse loading was investigated. From the results, it can be found that the proposed design equations provided good prediction of out-of-plane strength for parabolic arches which satisfy the thresholds for deep arches, while proposed design equations overestimated the buckling load of shallow arches.

Rationally modeling collapse due to bending and external pressure in pipelines

  • Nogueira, Andre C.
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.473-494
    • /
    • 2012
  • The capacity of pipelines to resist collapse under external pressure and bending moment is a major aspect of deepwater pipeline design. Existing design codes present interaction equations that quantify pipeline capacities under such loadings, although reasonably accurate, are based on empirical data fitting of the bending strain, and assumed simplistic interaction with external pressure collapse. The rational model for collapse of deepwater pipelines, which are relatively thick with a diameter-to-thickness ratio less than 40, provides a unique theoretical basis since it is derived from first principles such as force equilibrium and compatibility equations. This paper presents the rational model methodology and compares predicted results and recently published full scale experimental data on the subject. Predictive capabilities of the rational model are shown to be excellent. The methodology is extended for the problem of pipeline collapse under point load, longitudinal bending and external pressure. Due to its rational derivation and excellent prediction capabilities, it is recommended that design codes adopt the rational model methodology.

Coupled chemical and mechanical processes in concrete structures with respect to aging

  • Cramer, Friedhelm;Kowalsky, Ursula;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.53-71
    • /
    • 2014
  • Accurate prognoses of the durability of concrete structures require a detailed description of the continuously running aging processes and a consideration of the complete load history. Therefore, in the framework of continuous porous media mechanics a model is developed, which allows a detailed analysis of the most important aging processes of concrete as well as a flexible coupling of different processes. An overview of the prediction model and the balance equations is given. The material dependent model equations, the consequences of coupling different processes and the solution scheme are discussed. In two case studies the aging of concrete due to hydration and chloride penetration are presented, which illustrate the capabilities and the characteristics of the developed model.

Artificial intelligence as an aid to predict the motion problem in sport

  • Yongyong Wang;Qixia Jia;Tingting Deng;H. Elhosiny Ali
    • Earthquakes and Structures
    • /
    • 제24권2호
    • /
    • pp.111-126
    • /
    • 2023
  • Highly reliable and versatile methods artificial intelligence (AI) have found multiple application in the different fields of science, engineering and health care system. In the present study, we aim to utilize AI method to investigated vibrations in the human leg bone. In this regard, the bone geometry is simplified as a thick cylindrical shell structure. The deep neural network (DNN) is selected for prediction of natural frequency and critical buckling load of the bone cylindrical model. Training of the network is conducted with results of the numerical solution of the governing equations of the bone structure. A suitable optimization algorithm is selected for minimizing the loss function of the DNN. Generalized differential quadrature method (GDQM), and Hamilton's principle are used for solving and obtaining the governing equations of the system. As well as this, in the results section, with the aid of AI some predictions for improving the behaviors of the various sport systems will be given in detail.

차량 배기관용 V-Insert 클램프의 체결 성능 평가 (Characterization of V-Insert Clamp Joint Applied to Automobile Exhaust Pipes)

  • 황영은;윤성호
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.208-213
    • /
    • 2012
  • In this study, the mechanical joint performance of the V-Insert clamp applied to automobile exhaust pipes was evaluated through the experimental investigation of its axial load capacity. The axial load of the V-Insert clamp was also determined by using theoretical equations presented by Shoghi and compared with the experimental results. As results of the theoretical prediction, the axial load of the V-Insert clamp tended to increase along with smaller angle of the V-Insert segment and the lower friction coefficient between the V-Insert segment and exhaust pipes. The experimental results under tightening effects were similar to the theoretical results and the axial load of the V-Insert clamp presented maximum values in the range of all torques at distance of 2mm between each exhaust pipes. The experimental results under loading effects were similar to the theoretical results in the range of lower torques but deviated from the theoretical results in the range of higher torques. These results would be beneficial to improve the joint and sealing performance of the V-Insert clamp.

Shear resistance of corrugated web steel beams with circular web openings: Test and machine learning-based prediction

  • Yan-Wen Li;Guo-Qiang Li;Lei Xiao;Michael C.H. Yam;Jing-Zhou Zhang
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.103-117
    • /
    • 2023
  • This paper presents an investigation on the shear resistance of corrugated web steel beams (CWBs) with a circular web opening. A total of five specimens with different diameters of web openings were designed and tested with vertical load applied on the top flange at mid-span. The ultimate strengths, failure modes, and load versus middle displacement curves were obtained from the tests. Following the tests, numerical models of the CWBs were developed and validated against the test results. The influence of the web plate thickness, steel grade, opening diameter, and location on the shear strength of the CWBs was extensively investigated. An XGBoost machine learning model for shear resistance prediction was trained based on 256 CWB samples. The XGBoost model with optimal hyperparameters showed excellent accuracy and exceeded the accuracy of the available design equations. The effects of geometric parameters and material properties on the shear resistance were evaluated using the SHAP method.

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.

이중탄성계수 복합재료판의 좌굴 (Buckling of Bimodulus Composite Thin Plate)

  • 이영신;김종천
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1520-1534
    • /
    • 1994
  • A new analytical method for the prediction of the buckling behavior of laminated plates consisting of layers having different properties in tension and compression, so called bimodulus, is proposed in this paper. Buckling analysis of bimodular composite laminated paltes are performed with the results reduced from plate bending analysis. The governing equations of bimodular plates are based on the first shear deformation theory. As a case study, bending and buckling of simply supported, multilayered, symmetric, antisymmtric, and specially orthotropic laminates under uniformly distributed lateral load for bending analysis and in-plane load for buckling are considered. The results of the bending analysis are compared with the previous papers. Then, the fundamental critical buckling loads and buckling modes are calculated for the various bimodular composite rectangular thin plates.

Numerical formulation of P-I diagrams for blast damage prediction and safety assessment of RC panels

  • Mussa, Mohamed H.;Mutalib, Azrul A.;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.607-620
    • /
    • 2020
  • A numerical study is carried out to assess the dynamic response and damage level of one- and two-way reinforced concrete (RC) panels subjected to explosive loads by using finite element LS-DYNA software. The precision of the numerical models is validated with the previous experimental test. The calibrated models are used to conduct a series of parametric studies to evaluate the effects of panel wall dimensions, concrete strength, and steel reinforcement ratio on the blast-resistant capacity of the panel under various magnitudes of blast load. The results are used to develop pressure-impulse (P-I) diagrams corresponding to the damage levels defined according to UFC-3-340-02 manual. Empirical equations are proposed to easily construct the P-I diagrams of RC panels that can be efficiently used to assess its safety level against blast loads.

사질토 지반에 시공된 얕은 기초 침하예측식의 신뢰도 및 정확도 분석 (Reliability and Accuracy Analyses of Prediction Equations for Settlement Calculation of Shallow Foundations Constructed on Sandy Soils)

  • 임유진
    • 한국방재학회 논문집
    • /
    • 제8권3호
    • /
    • pp.77-86
    • /
    • 2008
  • 현재 사용되고 있는 여러 가지 얕은기초 침하량 예측식에 대한 신뢰성 평가를 위해 얕은기초에 대한 각종 재하시험 데이터, 기초의 형상과 위치 및 지반 원위치시험 관련사항을 조사하여 데이터베이스(D/B)로 구축하였으며 이를 바탕으로 통계분석을 실시할 수 있는 해석프로그램을 제작하여 기존 침하량 산정 공식의 정확도(accuracy)와 신뢰수준(reliability), 특히, 기존 침하량 공식의 침하비(s/B) 대비 안정성을 평가하여 기 사용 5개식에 대한 평가결과를 제시하였다. 현재수준의 분석결과는 D/B의 양과 질에 좌우되므로 양질의 데이터를 추가로 확보하고 5가지 이외의 방법까지 분석하면 신뢰성과 정확성을 파악하면서 설계에 적용할 수 있을 것으로 판단된다.