DOI QR코드

DOI QR Code

Coupled chemical and mechanical processes in concrete structures with respect to aging

  • Received : 2014.02.11
  • Accepted : 2014.03.20
  • Published : 2014.03.25

Abstract

Accurate prognoses of the durability of concrete structures require a detailed description of the continuously running aging processes and a consideration of the complete load history. Therefore, in the framework of continuous porous media mechanics a model is developed, which allows a detailed analysis of the most important aging processes of concrete as well as a flexible coupling of different processes. An overview of the prediction model and the balance equations is given. The material dependent model equations, the consequences of coupling different processes and the solution scheme are discussed. In two case studies the aging of concrete due to hydration and chloride penetration are presented, which illustrate the capabilities and the characteristics of the developed model.

Keywords

References

  1. Bangert, F., Kuhl, D. and Meschke, G. (2004), "Chemo-hygro-mechanical modelling and numerical simulation of concrete deterioration caused by alkali-silica reaction", Int. J. Numer. Anal. Meth. Geomech., 28(7-8), 689-714. https://doi.org/10.1002/nag.375
  2. Baroghel-Bouny, V., Mainguy, M., Lassabatere, T. and Coussy, O. (1999), "Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials", Cement Concrete Res., 29(8), 1225-1238. https://doi.org/10.1016/S0008-8846(99)00102-7
  3. Baroghel-Bouny, V., Thiery, M. and Wang, X. (2011), "Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials", Cement Concrete Res., 33(8), 832-847. https://doi.org/10.1016/j.cemconcomp.2011.04.007
  4. Bazant, Z.P. and Prasannan, S. (1989), "Solidification theory for concrete creep. I: formulation", J. Eng. Mech. - ASCE, 115(8), 1691-1703. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1691)
  5. Bazant, Z.P., Hauggaard, A.B., Baweja, S. and Ulm, F.J. (1997), "Microprestress-solidification theory for concrete creep. I: Aging and drying effects", J. Eng. Mech. - ASCE, 123(11), 1188-1194. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188)
  6. Bentz, D.P., Waller, V. and de Larrard, F. (1998), "Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructural model", Cement Concrete Res., 28(2), 285-297. https://doi.org/10.1016/S0008-8846(97)00264-0
  7. Derluyn, H., Moonen, P. and Carmeliet, J. (2014), "Deformation and damage due to drying-induced salt crystallization in porous limestone", J. Mech. Phys. Solids, 63, 242-255. https://doi.org/10.1016/j.jmps.2013.09.005
  8. Engelen, R.A.B., Geers, M.G.D. and Baaijens, F. (2003), "Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour", Int. J. Plasticity, 19(4), 403-433. https://doi.org/10.1016/S0749-6419(01)00042-0
  9. Gawin, D., Pesavento, F. and Schrefler, B.A. (2003), "Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation", Comput. Method. Appl. M., 192(13-14), 1731-1771. https://doi.org/10.1016/S0045-7825(03)00200-7
  10. Gawin, D., Pesavento, F. and Schrefler, B.A. (2006), "Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: shrinkage and creep of concrete", Int. J. Numer. Meth. Eng., 67(3), 299-331. https://doi.org/10.1002/nme.1615
  11. Gehlen, C. (2000), "Probability-based service life design of reinforced concrete structures. Reliability studies for prevention of reinforcement corrosion", Deutscher Ausschuss fur Stahlbeton, (510), (in German).
  12. Jensen, O.M. and Hansen, P.F. (2001), "Water-entrained cement-based materials: I. principles and theoretical background", Cement Concrete Res., 31 (4), 647-654. https://doi.org/10.1016/S0008-8846(01)00463-X
  13. Lewis, R. and Schrefler, B.A. (1998), The finite element method in the static and dynamic deformation and consolidation of porous media, John Wiley & Sons.
  14. Ostermann, L. (2011), Hochtemperaturverhalten von Beton - Gekoppelte Mehrfeld-Modellierung und numerische Analyse, Ph.D. Dissertation, TU Braunschweig, Braunschweig.
  15. Pantazopoulou, S.J. and Mills, R.H. (1995), "Microstructural aspects of the mechanical response of plain concrete", ACI Mater. J., 92(6), 605-616.
  16. Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M. and Geers, M.G.D. (1995), "Gradient-enhanced damage modelling of concrete", Mech. Cohesive-Frictional Mater., 3(4), 323-342.
  17. Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1993), "The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials", Cement Concrete Res., 23(4), 761-772. https://doi.org/10.1016/0008-8846(93)90030-D
  18. Steffens, A. (2000), Modellierung von Karbonatisierung und Chloridbildung zur numerischen Analyse der Korrosionsgefahrdung der Betonbewehrung, Ph.D. Dissertation, TU Braunschweig, Braunschweig.
  19. Steffens, A., Dinkler, D. and Ahrens, H. (2002), "Modeling carbonation for corrosion risk prediction of concrete structures", Cement Concrete Res., 32(6), 935-941. https://doi.org/10.1016/S0008-8846(02)00728-7
  20. Tacke, R. (2002), Feuchte- und Festigkeitsentwicklung hydratisierenden Betons - Modellierung und numerische Analyse", Ph.D. Dissertation, TU Braunschweig, Braunschweig.

Cited by

  1. Thermomechanics failure of RC composites: computational approach with enhanced beam model vol.3, pp.1, 2014, https://doi.org/10.12989/csm.2014.3.1.111
  2. A macroscopic gradient-enhanced damage model for deformation behavior of concrete under cyclic loadings vol.90, pp.5, 2020, https://doi.org/10.1007/s00419-020-01669-4