• Title/Summary/Keyword: Load frequency control (LFC)

Search Result 17, Processing Time 0.022 seconds

Load Frequency Control by Optimal Linear Tracking (최적선형 추적법에 의한 부하-주파수제어)

  • 김훈기;곽노홍;문영현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.83-92
    • /
    • 1989
  • This paper presents a load frequency control by optimal linear tracking, which can be well adapted to practical power systems with successive load disturbances. Conventional Load Frequency Controls (LEC's) have a feedback control scheme of the state error deviated from the post-disturbance steady state. This requires the modification of reference everytime the system encounters load changes. In this study, a new feedback scheme of LEC is developed by using the optimal linear tracking method with a fixed reference. As a result, the proposed LFC, which requires no reference modification, can be efficiently applied to power systems with successive disturbances such as load changes due to the on-off operations of reclosers or feeder switches. Another feature of the proposed LFC is that it adopts an algorithm to calculate an optimal post-fault steady state with the consideration of control input changes. The proposed LFC has been tested for a 2-area power system, which shows that it can be well adapted to successive load disturbances with good frequency response.

  • PDF

Simultaneous Control of Frequency Fluctuation and Battery SOC in a Smart Grid using LFC and EV Controllers based on Optimal MIMO-MPC

  • Pahasa, Jonglak;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.601-611
    • /
    • 2017
  • This paper proposes a simultaneous control of frequency deviation and electric vehicles (EVs) battery state of charge (SOC) using load frequency control (LFC) and EV controllers. In order to provide both frequency stabilization and SOC schedule near optimal performance within the whole operating regions, a multiple-input multiple-output model predictive control (MIMO-MPC) is employed for the coordination of LFC and EV controllers. The MIMO-MPC is an effective model-based prediction which calculates future control signals by an optimization of quadratic programming based on the plant model, past manipulate, measured disturbance, and control signals. By optimizing the input and output weights of the MIMO-MPC using particle swarm optimization (PSO), the optimal MIMO-MPC for simultaneous control of the LFC and EVs, is able to stabilize the frequency fluctuation and maintain the desired battery SOC at the certain time, effectively. Simulation study in a two-area interconnected power system with wind farms shows the effectiveness of the proposed MIMO-MPC over the proportional integral (PI) controller and the decentralized vehicle to grid control (DVC) controller.

An integral square error-based model predictive controller for two area load frequency control

  • Kassem, Ahmed M.;Sayed, Khairy;El-Zohri, Emad H.;Ali, Hossam H.
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.79-90
    • /
    • 2017
  • The main objective of load frequency control (LFC) is to keep the frequency value at nominal value and force deviation of the frequency to zero in case of load change. This paper suggests LFC by using a model predictive control (MPC), based on Integral Square Error (ISE) method designed to optimize the damping of oscillations in a two-area power system. The MPC is designed and simulated with a model system in state space, for robust performance in the system response. The proposed MPC is tuned by ISE to achieve superior efficiency. Moreover, its performance has been assessed and compared with the PI and PID conventional controllers. The settling time and overshoot with MPC are extremely minimized as compared with conventional controllers.

Design of QFT controller of superconductor flywheel energy storage system for load frequency control

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • In this paper, the Superconductor flywheel energy storage system (SFESS) was used for the load frequency control (LFC) of an interconnected 2 area power system. The robust SFESS controller using quantitative feedback theory (QFT) was designed to improve control performance in spite of parameter uncertainty and unexpected disturbances. An overlapping decomposition method was applied to simplify SFESS controller design for the interconnected 2 area power system. The model for simulation of the interconnected 2 area power system included the reheat steam turbine, governor, boiler dynamics and nonlinearity such as governor deadband and generation rate constraint (GRC). To verify robust performance of proposed SFESS controller, dynamic simulation was performed under various disturbances and parameters variation of power system. The results showed that the proposed SFESS controller was more robust than the conventional method.

Ancillary Service Requirement Assessment Indices for the Load Frequency Control in a Restructured Power System with Redox Flow Batteries

  • Chandrasekar, K.;Paramasivam, B.;Chidambaram, I.A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1535-1547
    • /
    • 2016
  • This paper proposes various design procedures for computing Power System Ancillary Service Requirement Assessment Indices (PSASRAI) for a Two-Area Thermal Reheat Interconnected Power System (TATRIPS) in a restructured environment. In an interconnected power system, a sudden load perturbation in any area causes the deviation of frequencies of all the areas and also in the tie-line powers. This has to be corrected to ensure the generation and distribution of electric power companies to ensure good quality. A simple Proportional and Integral (PI) controllers have wide usages in controlling the Load Frequency Control (LFC) problems. So the design of the PI controller gains for the restructured power system are obtained using Bacterial Foraging Optimization (BFO) algorithm. From the simulation results, the PSASRAI are calculated based on the settling time and peak over shoot concept of control input deviations of each area for different possible transactions. These Indices are useful for system operator to prepare the power system restoration plans. Moreover, the LFC loop coordinated with Redox Flow Batteries (RFB) has greatly improved the dynamic response and it reduces the control input requirements and to ensure improved PSASRAI, thereby improving the system reliability.

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

Robust Fuzzy Load-Frequency Control of Nonlinear Power Systems Using Intelligent Digital Redesign Technique (지능형 디지털 재설계 기법을 이용한 비선형 전력 계통의 강인 퍼지 부하 주파수 제어)

  • 이남수;이연우;전상원;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.142-145
    • /
    • 2000
  • A new robust load-frequency control (LFC) methodology is proposed for nonlinear power systems with the valve position limits of the governor in the presence of parametric uncertainties. The Takagi-Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the nonlinear power system. A sufficient condition of the robust stability is presented in the sense of Lyapunov for the TS fuzzy model with parametric uncertainties. The intelligent digital redesign technique for the uncertain nonlinear power system is also studied. The effectiveness of the proposed robust fuzzy LFC controller design method is demonstrated through a numerical simulation.

  • PDF

Application of FESS Controller for Load Frequency Control

  • Lee, Jeong-Phil;Kim, Han-Guen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.361-366
    • /
    • 2013
  • This paper presents the effect on application of the flywheel energy storage system (FESS) for load frequency control (LFC) of an interconnected 2 area power system. To do this, the control characteristics with the FESS were compared with that of the conventional governor controller. The controller for the FESS control and the governor control used a PID type controller. Both the FESS PID controller and the governor PID controller using genetic algorithm (GA) were designed to optimize the PID parameters. The frequency and generation output characteristics with the only FESS controller and with the only conventional governor controller were compared. To verify robust performance of the FESS controller, the computer simulations were performed under various disturbances. The simulation results showed that the FESS controller provided better dynamic responses in comparison with the conventional governor controller.

Design of Robust FPID Controller and Control Characteristics for Load Frequency Control in Power System (전력시스템의 부하주파수제어를 위한 강인한 FPID제어기의 설계와 제어특성)

  • Moon, Young-Moon;Kim, Hae-Jae;Ahn, In-Mo;Joo, Seok-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.28-30
    • /
    • 1999
  • This paper proposes a robust FPID(Fuzzy Proportional Integral Derivative) controller for the LFC(load frequency control) of 2-area power system. The PID gain parameters of the proposed robust FPID controller are self-tuned by PSGM(Product Sum Gravity Method) which is very similiar to human's inference procedures. As the results of simulation, the proposed FPID controller against various load disturbances shows that it is superior to the conventional control techniques such as optimal, PID and fuzzy control in the response characteristics of frequency and tie line power flow.

  • PDF

A study on load frequency control characteristics of power systems using IA-PID controller (IA-PID 제어기를 이용한 전력시스템의 부하주파수 제어 특성에 관한 연구)

  • Kim, C.H.;Lee, J.P.;Mun, M.K.;Chung, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.116-119
    • /
    • 2001
  • In this paper. the robust PID controller using immune algorithm(IA) for load frequency control(LFC) is designed. In proposed method. objective function is represented as antigens. An affinity calculation is embedded within the algorithm for determining the promotion or suppression of antibody. Simulation results show that the proposed robust load frequency controller can achieve good performance even in the presence of generation rate constraints.

  • PDF