• Title/Summary/Keyword: Load control mechanism

Search Result 277, Processing Time 0.026 seconds

Development of the Medical Support Service Robot Using Ergonomic Design

  • Cho, Young-Chul;Jang, Jae-Ho;Park, Tong-Jin;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2660-2664
    • /
    • 2003
  • In this study, the concept of autonomous mobility is applied to a medical service robot. The aim of the development of the service robot is for the elderly assisting walking rehabilitation. This study aims that the service robot design parameter is proposed in ergonomic view. The walking assistant path pattern is derived from analyzing the elderly gait analysis. A lever is installed in the AMR in order to measure the pulling force and the leading force of the elderly. A lever mechanism is applied for walking assistant service of the AMR. This lever is designed for measuring the leading force of the elderly. The elderly adjusts the velocity of the robot by applying force to the lever. The action scope and the service mechanism of the robot are developed for considering and analyzing the elderly action patterns. The ergonomic design parameters, that is, dimensions, action scope and working space are determined based on the elderly moving scope. The gait information is acquired by measuring the guide lever force by load cells and working pattern by the electromyography signal.

  • PDF

A topological optimization method for flexible multi-body dynamic system using epsilon algorithm

  • Yang, Zhi-Jun;Chen, Xin;Kelly, Robert
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.475-487
    • /
    • 2011
  • In a flexible multi-body dynamic system the typical topological optimization method for structures cannot be directly applied, as the stiffness varies with position. In this paper, the topological optimization of the flexible multi-body dynamic system is converted into structural optimization using the equivalent static load method. First, the actual boundary conditions of the control system and the approximate stiffness curve of the mechanism are obtained from a flexible multi-body dynamical simulation. Second, the finite element models are built using the absolute nodal coordination for different positions according to the stiffness curve. For efficiency, the static reanalysis method is utilized to solve these finite element equilibrium equations. Specifically, the finite element equilibrium equations of key points in the stiffness curve are fully solved as the initial solution, and the following equilibrium equations are solved using a reanalysis method with an error controlled epsilon algorithm. In order to identify the efficiency of the elements, a non-dimensional measurement is introduced. Finally, an improved evolutional structural optimization (ESO) method is used to solve the optimization problem. The presented method is applied to the optimal design of a die bonder. The numerical results show that the presented method is practical and efficient when optimizing the design of the mechanism.

The Analysis of the Bearing Capacity of Layered Clay by Numerical Methods (수치해석적 방법에 의한 층상 점토지반의 극한지지력 해석)

  • 김영민
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.121-129
    • /
    • 2003
  • Numerical studies on bearing capacity problems of layered clay are performed for smooth and rough strip footings. The finite element method and finite difference method (FLAC) are used for computations of the bearing capacity, entire load-displacement curve and the failure mechanism. The presented results show that it is possible to analyze the bearing capacity of layered clay and to give a progressive failure mechanism clearly. To obtain high quality solutions, it is necessary to review the results on control parameters(e.g., yield function, number of calculation) and compare the results by two numerical methods.

Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper

  • Ghamari, Ali;Haeri, Hadi;Khaloo, Alireza;Zhu, Zheming
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2019
  • Passive steel dampers have shown favorable performance in last earthquakes, numerical and experimental studies. Although steel dampers are more affordable than other types of damper, they are not economically justified for ordinary buildings. Therefore, in this paper, an innovative steel damper with shear yielding mechanism is introduced, which is easy to fabricate also can be easily replaced after sever earthquakes. The main goal of implementing such a mechanism is to control the possible damage in the damper and to ensure the elastic behavior of other structural components. The numerical results indicate an enhancement of the hysteretic behavior of the concentrically braced frames utilizing the proposed damper. The proposed damper change brittle behavior of brace due to buckling to ductile behavior due to shear yielding in proposed damper. The necessary relations for the design of this damper have been presented. In addition, a model has been presented to estimate load-displacement of the damper without needing to finite element modeling.

A Study on Engine Valve and Seat Insert Wearing Depending on Speed Change (속도변화에 따른 엔진 밸브 및 시트 인서트의 마모에 관한 연구)

  • 전경진;홍재수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.14-20
    • /
    • 2003
  • The minimization of valve and seat insert wear is a critical factor in the pursuit of engine performance improvement. In order to achieve this goal, we have developed a new simulator, which can generate and control high temperatures up to $900^{\circ}C$ and various speeds up to 80Hz during motion, just like an actual engine. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. The objective of this work focuses on the different degrees of wear from two different test speeds (10Hz & 25Hz). For this study, the temperature of the outer surface of the seat insert was controlled at $350^{\circ}C$, the cycle number was 2.1$\times$106, and the test load was 1960N. The wear depth and surface roughness were measured before and after the testing using a confocal laser scanner. It was found that a higher speed (25Hz) causes more wear than a lower speed (10Hz) under identical test conditions (temperature, cycle number and test load). In the wear mechanism adhesive wear, shear strain and abrasive wear could be observed.

Micro-machining of Glasses using Chemical-assisted Ultrasonic Machining (화학적 초음파가공을 이용한 유리의 미세가공)

  • 전성건;신용주;김병희;김헌영;전병희
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2085-2091
    • /
    • 2003
  • An ultrasonic machining process has been known as efficient and economical means fer precision machining of glass or ceramic materials. However, because of its complexity, the mechanism of the machining process is still not well understood. Therefore, it is hard to optimize the process parameters effectively. The conventional ultrasonic machining which uses the abrasive slurry only, furthermore, is time-consuming and gives the relatively rough surface. In order to increase the material removal rate and improve the integrity of the machined surface, we have introduced the novel ultrasonic machining technique, Chemical-assisted UltraSonic Machining(CUSM). The desktop-style micro ultrasonic machine has been developed and the z-axis feed is controlled by the constant load control algorithm. To obtain the chemical effects, the low concentration HF(hydrofluoric acid) solution, which erodes glass, added to alumina slurry. Through various experiments and comparison with conventional results, the superiority of CUSM is verified. MRR increases over 200%, the surface roughness is improved and the machining load decreases dramatically.

Study on rockburst prevention technology of isolated working face with thick-hard roof

  • Jia, Chuanyang;Wang, Hailong;Sun, Xizhen;Yu, Xianbin;Luan, Hengjie
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.447-459
    • /
    • 2020
  • Based on the literature statistical method, the paper publication status of the isolated working face and the distribution of the rockburst coal mine were obtained. The numerical simulation method is used to study the stress distribution law of working face under different mining range. In addition, based on the similar material simulation test, the overlying strata failure modes and the deformation characteristics of coal pillars during the mining process of the isolated working face with thick-hard key strata are analyzed. The research shows that, under the influence of the key strata, the overlying strata formation above the isolated working face is a long arm T-type spatial structure. With the mining of the isolated working face, a series of damages occur in the coal pillars, causing the key strata to break and inducing the rockburst occurs. Combined with the mechanism of rockburst induced by the dynamic and static combined load, the source of dynamic and static load on the isolated working face is analyzed, and the rockburst monitoring methods and the prevention and control measures are proposed. Through the above research, the occurrence probability of rockburst can be effectively reduced, which is of great significance for the safe mining of deep coal mines.

Study on the De-Q'ing System for the Output Voltage Stabilization of a 200MW Modulator (200MW MODULATOR의 출력안정화를 위한 DE-Q'ING SYSTEM에 관한 연구)

  • Son, Y.K.;Oh, J.S.;Cho, M.H.;Namkung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1612-1614
    • /
    • 1994
  • Modulators Installed in PLS(Pohang Light Source) Linac are composed of a DC high voltage section, a charging section and a discharging section. PFN is charged by a resonant charging mechanism, and discharged by a switching device through the primary of the pulse transformer connected to a load. Charged PFN voltage must be well regulated to obtain stable output pulse voltage at the load. For this purpose, DCHV is controlled by a SCR controller with feedback signal, and PFN voltage is regulated by a De-Q'ing circuit. The full power operation test shows the pulse voltage regulation within ${\pm}0.13%$ with SCR feedback control alone, and within ${\pm}0.08%$ together with De-Q'ing. This paper describes the design concept and operational characteristics of the De-Q'ing circuit.

  • PDF

Hybrid PI Controller for Performance Improvement of IPMSM Drive (IPMSM 드라이브의 성능 향상을 위한 하이브리드 PI 제어기)

  • Nam, Su-Myeong;Lee, Jung-Chul;Lee, Hong-Gyun;Choi, Jung-Sik;Ko, Jae-Sub;Park, Gi-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.191-193
    • /
    • 2005
  • This paper presents Hybrid PI controller of IPMSM drive using fuzzy adaptive mechanism(FAM) control. To increase the robustness, fixed gam PI controller, Hybrid PI controller proposes a new method based self tuning PI controller. Hybrid PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Optimal Scheduling of Electric Vehicles Charging in low-Voltage Distribution Systems

  • Xu, Shaolun;Zhang, Liang;Yan, Zheng;Feng, Donghan;Wang, Gang;Zhao, Xiaobo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.810-819
    • /
    • 2016
  • Uncoordinated charging of large-scale electric vehicles (EVs) will have a negative impact on the secure and economic operation of the power system, especially at the distribution level. Given that the charging load of EVs can be controlled to some extent, research on the optimal charging control of EVs has been extensively carried out. In this paper, two possible smart charging scenarios in China are studied: centralized optimal charging operated by an aggregator and decentralized optimal charging managed by individual users. Under the assumption that the aggregators and individual users only concern the economic benefits, new load peaks will arise under time of use (TOU) pricing which is extensively employed in China. To solve this problem, a simple incentive mechanism is proposed for centralized optimal charging while a rolling-update pricing scheme is devised for decentralized optimal charging. The original optimal charging models are modified to account for the developed schemes. Simulated tests corroborate the efficacy of optimal scheduling for charging EVs in various scenarios.