• Title/Summary/Keyword: Load case

Search Result 3,587, Processing Time 0.035 seconds

A Study on the Geometric Deformation Measurement of Structures by Collinearity Condition (공선조건에 의한 구조물의 기하학적 변형해석에 관한 연구)

  • 강준묵;오원진;이진덕;한승희
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.4 no.2
    • /
    • pp.77-87
    • /
    • 1986
  • As for the deformation measurement of structure, there are many controversial points in using the methods by the strain guage, inclinometer, bial guage, and geodetic method because of the difficulty of instrument setting and the problem in the degree of accuracy of the results as well as in the economical aspect. Therefore, to verify the superiority of the Close- Range Photogrammetry method for the structural deformation measurement, the result of load deformation on the model structure, which was made using the Close-Range Photogrammetry method was compard with the results which was made using the methods of dial guage, precision level, and triangulation. In addition to that, to consider the general problem which would happen when C. R. P method was applied to the practical structure. The elements of C. R. P method like camera rotation angle ($\psi$,$\omega$), exposure elevation (Z$_{L}$), and angle of inclined base line ($\theta$) were experimented, and their specificities were reconsidered. As a result, the application of C. R. P method to the general structure is expected to be increased not only in the aspect of accuracy but in the economical aspect.t.

  • PDF

A Study on Optimal Parameter Selection for Health Monitoring of Turboprop Engine (PT6A-62) (터보프롭엔진(PT6A-62)의 성능저하 진단을 위한 최적 계측 변수 선정에 관한 연구)

  • 공창덕;기자영;장현수;오성환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.87-97
    • /
    • 2000
  • A steady state performance simulation and diagnostics program for the turboprop engine (PT6A-62), which is the power plant of the first developed military basic trainer KT-1 in Republic of Korea, was developed. The developed steady state performance analysis program was evaluated with the performance data provided by the engine manufacturer and with analysis results of GASTURB program, which is well known for the performance simulation of gas turbines. Performance parameters were discussed to evaluate validity of the developed program at various cases such as altitude, flight velocity and part load variation. GPA(Gas Pass Analysis) allows engine performance deterioration to be identified at the module level in terms of reduction in component efficiencies and changes in mass flow. In order to find optimal instrument set to detect the physical faults such as fouling, erosion and corrosion, a gas path analysis approach is utilized. This study was performed in two cases for selection of optimal measurement parameters. One case was considered with the effect of instrument number by changing independent parameter number. The other case was performed with selection of independent parameter set. According to the analysis results, the optimal measurement parameters selected were eight dependent variables such as shaft horsepower, fuel flow rate, compressor exit pressure and temperature, compressor turbine inlet pressure and temperature and power turbine inlet pressure and temperature.

  • PDF

A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System (소형 가스엔진 열병합 발전시스템 안전기준 개발)

  • Kwon, Jun-Yeop;Kim, Min-Woo;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.27-35
    • /
    • 2021
  • Recently, as a solution to the sharp drop in "power reserve ratio", it is being converted to a microgrid that enables bi-directional transmission and distribution. A microgrid is composed of a small-scale distributed power supply and a load. As a representative technology of distributed power generation, there is a Micro Combined Heat and Power system applied to homes and buildings. In this study, a safety standard was developed by dividing the power generation system, cooling system, lubrication system, and exhaust system to derive safety standards for a small gas engine power generation system with a gas consumption less than 232.6kW (200,000 kcal/h). In the case of the power generation system, a filter was installed and the system was stopped by detecting gas leakage and abnormalities in engine speed or output and the cooling system is stipulated to stop the system in case of insufficient cooling water or overheating. The lubrication system monitors the pressure and temperature of the lubricating oil and stops the system when an abnormality occurs, and the exhaust gas emission concentration regulation value was specified in accordance with domestic and foreign standards. Through the results of this study, it is judged that the safety of the gas engine power generation system can be improved and it can contribute to the commercialization of products.

Environmental Impact and Water Foot Print Assessment of Pot Bearing Using Life Cycle Assessment (LCA) (LCA를 이용한 교량용 포트받침 환경영향 및 물발자국 분석)

  • Park, Jihyung;Wie, Daehyung;Ko, Kwanghoon;Hwang, Yongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.851-857
    • /
    • 2018
  • In this research, LCA analysis of the manufacturing process of pot bearing for fixed, movable in all directions, movable in one direction was carried out to analyze the environmental load using the LCA methodology. Especially, the water footprint that has been and issue in recent years was analyzed. As a result of LCA, it was analyzed that the contribution of the plate was more than 64.2% in all of the six impact categories in the case of fixed pot bearing base, and more than 94% in the category of resource depletion and photochemical oxidant creation. In the case of all direction pot bearing and one direction pot bearing, the contribution of PTFE was the highest in the global warming and stratospheric ozone depletion, and the contribution by the plate was higher in the other impact categories. The water footprint of each type of pot bearing was analyzed as $22.4m^3\;H_2O\;eq/kg$ for one direction pot bearing, $17.1m^3\;H_2O\;eq/kg$ for fixed pot bearing, and $14.1m^3\;H_2O\;eq/kg$ for all direction pot bearing. As a result of life cycle analysis, the contribution of water use in manufacturing was more than 65% in all three types. The results of this study can be used as basic data for decision making in construction method and material selection of bridges in the future.

Structure Safety Analysis of Composite Lattice Structure with Inspection Window (복합재 격자구조물의 점검창 형상에 따른 구조안전성 해석)

  • Kim, Dong-geon;Bae, Ju-chan;Son, Jo-wha;Lee, Sang-woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.94-103
    • /
    • 2018
  • The purpose of designing composite lattice structure which applied to launching vehicle and tactical missile body is to minimize the thickness and weight for applied load. It is usually made of carbon fiber; fabricating with filament winding process over silicon mold, and provided with a window opening for inspection purpose if necessary. In this paper compression test is conducted without window opening in lattice structure and preliminary FEA is carried out to confirm its accuracy. And then FEA is performed for the case of window opening to evaluate the soundness and the safety factor of the structure. We have calculated for two kinds of window shape; rectangular one and hexagonal one. And we have calculated safety factors of the lattice structure with window opening in every case based on failure strength of rib and knot with varying the thickness and location of the window for hexagonal shape. Through our investigation, we have found out the followings; (1) the hexagonal shaped window is shown higher safety factor than rectangular one, (2) a window in a certain location is shown higher safety factor than others, (3) although the soundness of window structure is improved as increasing its thickness, a window of a certain thickness is shown higher safety factor than others because of stress concentration.

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.

Overhand Grip or Underhand Grip, which one is more Effective on Conventional Deadlift Movement? (오버핸드 그립과 언더핸드 그립, 무엇이 컨벤셔널 데드리프트에 효과적일까?)

  • Kim, Jaeho;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.133-139
    • /
    • 2021
  • Objective: This study aims to verify the conventional deadlift motions using by two different grips, thereby elucidating the grounds for effective training methods that can minimize the risk of injury. Method: Total of 18 healthy young adults were recruited for this study (age: 25.11±2.19 yrs., height: 175.67±5.22 cm, body mass: 78.5±8.09 kg, 1-RM: 125.75±19.48 kg). All participants were asked to perform conventional deadlift with two types of grips which are overhand grip (OG) and underhand grip (UG). In each grip, participant perform the deadlift with 50% and 80% of the pre-measured 1-RM. A 3-dimensional motion analysis with 8 infrared cameras and 3 channels of EMG was performed in this study. A two-way ANOVA (group × load) with repeated measure was used for statistical verification. The significant level was set at α=.05. Results: There were significant differences in grip type and weight on the right shoulder joint, and only significant difference in grip on the left shoulder joint (p<.05). The hip joint ROM was significantly increased as the weight increased in both types of grips on phase 1, while the ROM of hip joint was significantly decreased as the weight increased only in the case of OG on phase 2 (p<.05). In case of the OG, as the weight, increased significantly increased L1 ROM and L3 ROM were revealed on phase 1 and phase 2, respectively (p<.05). Moreover, as the weight increased, UG revealed significantly decreased L5 ROM on phase 1, while both grips showed significantly increased ROM on phase 2 (p<.05). In addition, the erector spinae and the biceps femoris, which are synergist for the motion, showed a significant difference in both types of grip according to the weight (p<.05). The muscle activity ratio of gluteus maximus/biceps femoris showed a significant difference only in the UG according to the weight (p<.05). Conclusion: In conclusion, beginners might be suggested to use the UG for maintaining the neutral state of the lumbar spine and focus on the gluteus maximus muscle, which is the main activation muscle. For the experts, it may recommend alternative use of the OG and UG according to the training purpose to minimize the compensation effect.

Evaluation of Flexural Performance According to the Plywood Bonding Method of Ply-Lam CLT (Ply-lam CLT의 합판 접합방식에 따른 휨 성능 평가)

  • CHOI, Gyu Woong;YANG, Seung Min;LEE, Hyun Jae;KIM, Jun Ho;CHOI, Kwang Hyeon;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.107-121
    • /
    • 2021
  • The purpose of this study is to optimize the bonding method of the plywood suitable for cross-laminated timber (CLT) with plywood as a core by analyzing the flexural performance and failure mode according to the lamina species, the method of bonding plywood in the longitudinal direction, and whether or not adhesive is applied to the joint. In the case of the Douglas fir lamina layer, the modulus of elasticity decreased by about 11.5% due to longitudinal bonding, and the modulus of rupture increased or decreased according to the adhesive application and bonding method. The optimal conditions were derived as the butt joint without adhesive, half lap joint with adhesive, and butt joint. In the case of the larch lamina layer, the modulus of rupture and the modulus of elasticity decreased by about 15% and 40%, respectively. When using the half lab joint and tongue & groove joint, it is believed that it reduces the load transmitted to the middle layer by primarily preventing the failure on flexure at the joint of the plywood layer. From the results of this study, the larch lamina layer used in the manufacturing process of Ply-lam CLT did not show any difference based on the bonding method. Butt joint and half lap joint bonding method are determined to be suitable when using Douglas fir lamina layer.

Analysis of Control Performance in Gap Size of MR Damper (MR Damper의 Gap Size에 따른 제어성능 분석)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • In this study, the flow path width (Gap Size), which is the flow path of fluid, was selected differently among various factors that determine the Ccontrol Force of MR damper, and the change of Control Force was confirmed accordingly. For this purpose, two MR dampers with a Gap Size of 1.0mm and 1.5mm were fabricated, respectively, and dynamic load experiments were conducted according to changes in applied current and vibration conditions The experimental results showed that the minimum Control Force was 3.2 times higher than 1.5mm in the case of 1.0mm Gap Size, and the maximum Control Force was 2.3 times higher than 1.5mm in the case of 1.0mm Gap Size. In addition, the increased width of the Control Force according to applied current was 34N for Gap Size 1.0mm, and 12.7N for Gap Size 1.5mm. As the gap Size increased, the overall Control Force and the increase in the Control Force by the applied current decreased. Next, the dynamic range, which is a performance evaluation index of the semi-active Control device, was 2.3 on average under 1.0mm condition and 2.8 on average under 1.5mm condition, confirming the possibility of utilization as a semi-active Control device.

Experiments of Water Mist System Application for Rack Storage (랙크식 창고에 대한 미분무 시스템 적용성 실험)

  • Myoung, Sang-Yup;Kim, Jong-Hoon
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.627-637
    • /
    • 2020
  • Purpose: This experimental study was conducted to find out whether a water-mist fire suppression system can be applied to C.E.P., a representative combustible material of a rack storage. Method: First, it was confirmed whether the water-mist fire-extinguishing system used in this experiment was capable of extinguishing oil fires. After that, the C.E.P. boxes were loaded in the same small space as used in the oil fire experiment, and then the experiment was conducted on three scenarios; door opening, door closing, and door closing and increasing the internal load. The scenario was set considering the opening and space size conditions, which are important factors for the water-mist fire suppression. Result: Oil fire suppression tests have shown that fires are well extinguished in both the door open and closed conditions. In case of a fire of C.E.P. boxes in the same space condition as an oil fire, the fire was not extinguished in the door open condition. Fires were extinguished in the case with the door closed condition, but the afterglow was confirmed. Conclusion: In the oil fire suppression test, a water-mist fire suppression system extinguished a fire in both the door open and closed conditions. However, for the C.E.P fire, it was possible to extinguish only under the door closed condition, and there was a possibility of re-ignition.