• Title/Summary/Keyword: Load case

Search Result 3,586, Processing Time 0.029 seconds

A Dynamic Behavior Analysis of composite Few Plate Girder Railway Bridge under Variety of Track systems (소수주형 철도교의 궤도시스템 변화에 따른 동적거동 분석)

  • Lee Hong-Joon;Choi Jung-Youl;Eom Mac;Park Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1171-1176
    • /
    • 2005
  • The latest technical development of steel plate girder railway bridge are developing in ways to maximize its durability of materials in use of high strength steel and efficiency of maintenance and management by the introduction of simplified and standardization ideas. In addition to this, it is also expected to reduce the cost of bridge construction and to simplify the process of bridge manufacturing. Referring to this, composite few plate girder railway bridge is highly recommendable that is very economical with the fine exterior. In this paper, it will analyse the variation of dynamic behavior of existing composite few plate girder railway bridge with ballast caused by modified Slab Track through interpretation of limited enzyme in order to obtain the existing data for improvement of Slab Track system from Ballast Track system. Consequently, it can help maximize economic efficiency and structural capability. As a results, although the natural frequency by modified Slab Track are decreased, it is hardly influencing on the safety of railway bridges. It is also evident in the case of slab deck with a reduced scale in comparison with Ballast Track. Therefore, it is expected to reduce the cost of a railway bridge plan. And, it can expect the synergistic effect of the ensure long term durability of bridge caused by decreased stresses of bottom flange due to reduced dead load. As a result, the analytical study are carried out to investigate the composite few plate girder railway bridge could be the optimal design method for the dynamic safety of a girder section.

  • PDF

The Design of Multi-channel Synchronous Communication IC Using FPGA (FPGA를 이용한 다채널 동기 통신용 IC 설계)

  • Yang, Oh;Ock, Seung-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, the IC(Integrated Circuit) for multi-channel synchronous communication was designed by using FPGA and VHDL language. The existing chips for synchronous communication that has been used commercially are composed for one to two channels. Therefore, when communication system with three channels or more is made, the cost becomes high and it becomes complicated for communication system to be realized and also has very little buffer, load that is placed into Microprocessor increases heavily in case of high speed communication or transmission of high-capacity data. The designed IC was improved the function and performance of communication system and reduced costs by designing 8 synchronous communication channels with only one IC, and it has the size of transmitter/receiver buffer with 1024 bytes respectively and consequently high speed communication became possible. It was designed with a communication signal of a form various encoding. To detect errors of communications, the CRC-ITU-T logic and channel MUX logic was designed with hardware logics so that the malfunction can be prevented and errors can be detected more easily and input/output port regarding each communication channel can be used flexibly and consequently the reliability of system was improved. In order to show the performance of designed IC, the test was conducted successfully in Quartus simulation and experiment and the excellence was compared with the 85C3016VSC of ZILOG company that are used widely as chips for synchronous communication.

The development of full-scope replica simulator for variable supercritical pressure once-through fossil power plants (변압 관류형 초임계압 화력발전소 전범위 시뮬레이터 개발)

  • Lee, Jung-Kun;Ahn, Yeon-Shik;Jung, Hoon;Lee, Yong-Kwan;Han, Byoung-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.392-399
    • /
    • 1998
  • A full-scope replica type simulator whose MCR(main control room) has the same features and operation functions as MCR of the reference power plant has been developed for a fossil power plant. This simulator was developed with the model of Poryung Fossil Power Plant #3,4 which is the standard model of the Korean fossil power plant. It is the first localized simulator for the supercritical, variable boiler pressure type fossil power plant. The simulator provides various kinds of accidents which are in normal plant operation and thus enables operators to recover or reduce possible damages. To design and develop this kind of simulator, we need to integrate high technologies such as system analysis, plant operation and system integration of mechanics, physics, computer science. CASE(Computer Aided Software Engineering) tools were used to develop the dynamic model. This simulator will greatly contribute to the improvement of the safety and efficiency of the fossil power plant by implementing operator training. In this paper, the outline of software and hardware configuration and characteristics of the simulator are described, and the results of 30%, 50%, 75%, 100% load operation test will be discussed.

  • PDF

A Study on the Performance of Mechanical Pressurizing Equipment(MPE) for Improving Bond Strength of Repair Materials for Concrete Box Structures (콘크리트 박스 구조물용 보수재의 부착강도 향상을 위한 기계식 가압장비(MPE) 성능에 관한 연구)

  • Yu, Hyeong-Sik;Jung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.477-483
    • /
    • 2020
  • The rehabilitation methods used in existing concrete box structures rely on the method of attaching the repair material to the section of the structure with a spray equipment. In the case of ceiling or wall parts, the adhesion force to the repair material may be reduced by the gravity and dead load after construction. In subway structures, vibration causes a problem that reduces the initial adhesion. Supplementary measures are needed as the quality of repair varies depending on the worker's proficiency and construction environment. In this study, mechanical pressurization equipment was developed that can apply a certain pressure after construction of a repairwork to solve problems such as reduction of adhesion of repair materials by gravity and variation of repair quality by labor work. To find out the effect of the pressurized equipment, a chamber similar to the field conditions was constructed to measure the attachment strength different from the pressurized condition, the section, and the environmental conditions. The pressurization differed from the other parts, but the adhesion strength of up to 70% was increased.

A Study on the Sloshing of Cargo Tanks Including Hydroelastic Effects (유탄성을 고려한 탱크내 슬로싱에 대한 연구)

  • Dong-Yeon Lee;Hang-Shoon Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.27-37
    • /
    • 1998
  • The sloshing is very important in a safe transport of the liquid cargo by a ship. With the increasing number of supertanker and LNG carriers, this problem has become increasingly more important. In order to study the magnitude and characteristics of impact pressures due to sloshing, experiments ware performed with a rectangular tank and compared with numerical results. Structural responses of tank wall under impulsive pressures were measured. Structural vibrations induced by the sloshing load were analysed by including hydroelastic erects in terms of added mass and damping. To check the validity of the numerical model, the natural frequencies of plate in air and water were compared with measurements, and a good agreement was found. In the case that a plate vibrates under impulsive loads, the pressure on the flexible plate is larger than that on the rigid plate without hydroelastic effects, which was confirmed experimentally. The frequency of oscillatory pressure as well as accel%pion coincides with the natural frequency of plate in water.

  • PDF

Multiple Target Position Tracking Algorithm for Linear Array in the Near Field (선배열 센서를 이용한 근거리 다중 표적 위치 추적 알고리즘)

  • Hwang Soo-Bok;Kim Jin-Seok;Kim Hyun-Sik;Park Myung-Ho;Nam Ki-Gon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.294-300
    • /
    • 2005
  • Generally, traditional approaches to track the target position are to estimate ranges and bearings by 2-D MUSIC (MUltiple 519na1 Classification) method. and to associate estimates of 2-D MUSIC made at different time points with the right targets by JPDA (Joint Probabilistic Data Association) filter in the near field. However, the disadvantages of these approaches are that these have the data association Problem in tracking multiple targets. and that these require the heavy computational load in estimating a 2-D range/bearing spectrum. In case multiple targets are adjacent. the tracking performance degrades seriously because the estimate of each target's Position has a large error. In this paper, we proposed a new tracking algorithm using Position innovations extracted from the senor output covariance matrix in the near field. The proposed algorithm is demonstrated by the computer simulations dealing with the tracking of multiple closing and crossing targets.

A Case Study of Retraction Controlled Wind Velocity on the Steel Retractable Roof of Large Span (강성개폐식 대공간 지붕의 개폐 관리풍속 사례 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • The retractable roof structures have actions of various types of loads and external forces depending on the retraction and operation conditions of the roof in terms of efficiency of control and maintenance as the aspect of structural plan. In particular, there is a need for studies on the establishment of retraction controlled wind velocity to maintain the stable control and usability of roof structure against strong winds or sudden gusts during the retraction of the roof. In this paper, it was intended to provide basic materials for the development of guidelines on the operation and maintenance of domestic retractable buildings with large space by analyzing the factors affecting the retraction controlled wind velocity for the overseas stadiums with the large spatial retractable roof structures where the sliding system was applied on the steel retractable systems. As a result, the controlled wind velocity tends to decrease as the retractable roof area increases. On the other hand, the controlled wind velocity tends to increase as the retraction time increases. In addition, in the space-grid roof structures, the spherical roof structures type showed the average controlled wind velocity of 10m/sec lower than that of 17.3m/sec for curved-roof structure type, and in the curved-roof structure type, the truss roof structure showed the average controlled wind velocity of 8.9m/sec which is lower than that of 17.3m/sec for the space for the space-grid roof structure.

IN VITRO EVALUATION OF FRACTURE RESISTANCE OF VARIOUS THICKNESS FIBER- REINFORCED COMPOSITE INLAY FPD

  • Yi Yang-Jin;Yoon Dong-Jin;Park Chan-Jin;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.762-771
    • /
    • 2003
  • Statement of problem. In dentistry, the minimally prepared inlay resin-bonded fixed partial denture (FPD) made of new ceromer / fiber-reinforced composite (FRC) was recently introduced. However, the appropriate dimensions for the long-term success and subsequent failure strength are still unknown. Purpose. The aim of this study was to investigate the most fracture-resistible thickness combination of the ceromer / FRC using a universal testing machine and an AE analyzer. Material and Methods. A metal jig considering the dimensions of premolars and molars was milled and 56-epoxy resin dies, which had a similar elastic modulus to that of dentin, were duplicated. According to manufacturer's instructions, the FRC beams with various thicknesses (2 to 4 mm) were constructed and veneered with the 1 or 2 mm-thick ceromers. The fabricated FPDs were luted with resin cement on the resin dies and stored at room temperature for 72 hours. AE (acoustic emission) sensors were attached to both ends, the specimens were subjected to a compressive load until fracture at a crosshead speed of 0.5 mm/min. The AE and failure loads were recorded and analyzed statistically. Results. The results showed that the failure strength of the ceromer/FRC inlay FPDs was affected by the total thickness of the connectors rather than the ceromer to FRC ratio or the depth of the pulpal wall. Fracture was initiated from the interface and propagated into the ceromer layer regardless of the change in the ceromer / FRC ratio. Conclusion. Within the limitations of this study, the failure loads showed significant differences only in the case of different connector thicknesses, and no significant differences were found between the same connector thickness groups. The application of AE analysis method in a fiber-reinforced inlay FPD can be used to evaluate the fracture behavior and to analyze the precise fracture point.

A STUDY ON SURFACE OF VARIOUS ABUTMENT SCREWS

  • Park Chan-Ik;Chung Chae-Heon;Choi Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.351-359
    • /
    • 2003
  • Statement of problem: Regardless of any restoration, most of case, we used in screw connection between abutment and implant. For this reason, implant screw loosening has been remained problem in restorative practices. Purpose: The purpose of this study was to compare surface of coated/plated screw with titanium and gold alloy screw and to evaluate physical property of coated/plated material after scratch test in FESEM investigation Material and methods: GoldTite, titanium screw provided by 3i (Implant Innovation, USA) and TorqTite, titanium screw by Steri-Oss (Nobel Biocare, USA) and gold screw, titanium screw by AVANA (Osstem Implant, korea) - were selected for this study. Each abutment screw surface was observed at 100 times, and then screw crest, root, and slope were done more detailed numerical value, at 1000 times with FESEM. A micro-diamond needle was also prepared for the scratch test. Each abutment screw was fixed, micro-diamond scratch the surface of head region was made at constant load and then was observed central region and periphery of fine trace through 1000 times with FESEM. Results: The surface of GoldTite was smoother than that of other kinds of screw and had abundant ductility and malleability compared with titanium and gold screw. The scratch test also showed that teflon particles were exfoliated easily in screw coated with teflon. Titanium screw had a rough surface and low ductility. Conclusion: It was recommended that the clinical use of gold-plated screw would prevent a screw from loosening. CLINICAL IMPLICATIONS Clinical use of gold-plated screw would prevent a screw from loosening because it had abundant ductility and malleability compared with titanium and gold screw.

A Study on the Optimal Window Floor Ratio Acording to Transmitance of Dye Sensitized Solar Cell(DSSC) by Analysis of Daylighting perfomance and Glare Index of Transmitance (염료감응태양전지의 투과율에 따른 채광성능 및 현휘지수 분석을 통한 적정창면적비에 대한 연구)

  • Oh, Myung-Hwan;Sim, Se-Ra;Lee, Chul-Sung;Chin, Kyung-Il;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.92-97
    • /
    • 2009
  • It is more necessary to consider the various factors for developmenting visible PV module of alternative window than traditional PV module. It must have sufficient performance which is Tvis, daylighting, daylight factor, glare index. so that more needs to consider suitable plan and total evaluated technology. Under the this background. For using commonly a combination BIPV module system and Daylinghting that can alternative architectural window, our goal on this study is drawing proper window area ratio as the window by analyzing lighting performance and glare index depending on transmittance of DSSC. On this study, we drew the result about window area ratio that can apply in the building when applying DSSC in the window. In situation that window is alternated as curtain wall in atrium that has big Widow area, if applying red 15.8% DSSC of low transmittance, it is expect to proper because it is suitable illumination standard and doesn't occur a discomfort glare. In case of office, we propose to apply red 33.2% or blue 35.2% DSSC of high transmittance for no affecting lighting load. we expect to contribute to select proper and effective window when applying the window in the building by drawing the window area ratio that can apply in thee building depending on transmittance of DSSC and offering the glare index data.

  • PDF