• Title/Summary/Keyword: Load carrying curve

Search Result 49, Processing Time 0.031 seconds

Optimal Design of PSC-I Girder Bridge Considering Life Cycle Cost (생애주기비용을 고려한 PSC-I형 교량의 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the procedure for the optimal design of a PSC-I girder bridge considering life cycle cost (LCC). The load carrying capacity curves for the concrete deck, PSC-I girder and $\pi$-type pier were derived and used for the estimate of service lives. Total life cycle cost for the service life was calculated as sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The advanced First Order Second Moment method was used to estimate the damage cost. The optimization method was applied to the design of PSC-I girder bridge. The objective function was set to the annual cost, which is defined by dividing the total life cycle cost by the service life, and constraints were formulated on the basis of Korean Standards. The optimal design was performed for various service lives and the effects of design factors were investigated.

Bending Collapse Characteristics of Hat Section Beam Filled with Structural Foam (폼 충진 모자단면 빔의 굽힘붕괴 특성)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.92-99
    • /
    • 2006
  • Design capability for high safety vehicle with light weight is crucial to enhancing competitive power in vehicle market. The structural foam can contribute to restraining section distortion in body members undergoing bending collapse at vehicle crash. In this study, first, the validation of analysis model including structural foam model for simulating fracture behavior was discussed, and the bending collapse characteristics of five representative section types were analyzed and compared. Next, with changing the laminate foam shape, load carrying capability and absorbed energy were observed. The results suggests a design strategy of body members filled with laminate foam, leading to effectively elevating bending collapse characteristics with weight increase in the minimum.

Fatigue Strength Assessment of the Cruciform Fillet Welded Joint Considering Stress Concentration at Weld Toe (응력집중을 고려한 십자형 필렛 용접재의 피로강도 평가)

  • Kim D. J.;Seck C. S.;Koo J. M.;Park J. S.;Seo J. W.;Goo B. C.
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.222-227
    • /
    • 2004
  • Under cyclic loading, the fatigue failures of welded joints occur at weld toes which induce stress concentration by weld shape. So we need to obtain the peak stress and the S-N curve to assess the fatigue strength of welded joints. However the measurement of peak stress is of high uncertainty and low reproducibility, so we use nominal stress instead in fatigue tests of welded joints. In this study, fatigue tests to obtain S-N curves and FE analyses to obtain stress concentration factors were conducted for the two types of cruciform fillet welded joints, that is, load-carrying and non load-carrying types. Then we changed the obtained S-N curves to that based on peak stress using the hot-spot stress concept. From the analyses of the S-N curves obtained, we have concluded that there is a need to develop a new method to evaluate the fatigue life.

  • PDF

Experimental Study on the Fatigue Behavior of Welded Joints (용접 이음 형상별 피로거동에 관한 실험적 연구)

  • Goo, B.C.;Kim, J.H.;Oh, C.L.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.359-364
    • /
    • 2004
  • We investigated the effect of weld details on fatigue behavior of a material, JIS SM 490 A, with yielding strength of about 350 MPa and tensile strength of about 520 MPa. Tensile tests, instrumented indentation tests and fatigue tests were carried out on double V-grooved butt weld plates such as reinforcement removed, as-welded and weld toe ground. In addition plates with transverse fillet welded web, load carrying cruciform fillet welded plates, non-load-carrying cruciform fillet welded plates and longitudinal butt welded plates were tested. S-N curves for the above specimens were obtained and analyzed

  • PDF

Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression

  • Wang, Jun;Liu, Weiqing;Zhou, Ding;Zhu, Lu;Fang, Hai
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.431-452
    • /
    • 2014
  • The present study focuses on the mechanical behaviour of concrete filled double skin steel tubular (CFDST) stub columns confined by fiber reinforced polymer (FRP). A series of axial compression tests have been conducted on two CFDST stub columns, eight CFDST stub columns confined by FRP and a concrete-filled steel tubular (CFST) stub column confined by FRP, respectively. The influences of hollow section ratio, FRP wall thickness and fibre longitudinal-circumferential proportion on the load-strain curve and the concrete stress-strain curve for stub columns with annular section were discussed. The test results displayed that the FRP jacket can obviously enhance the carrying capacity of stub columns. Based on the test results, a new model which includes the effects of confinement factor, hollow section ratio and lateral confining pressure of the outer steel tube was proposed to calculate the compressive strength of confined concrete. Using the present concrete strength model, the formula to predict the carrying capacity of CFDST stub columns confined by FRP was derived. The theoretically predicted results agree well with those obtained from the experiments and FE analysis. The present method is also adapted to calculate the carrying capacity of CFST stub columns confined by FRP.

A proposed set of popular limit-point buckling benchmark problems

  • Leahu-Aluas, Ion;Abed-Meraim, Farid
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.767-802
    • /
    • 2011
  • Developers of new finite elements or nonlinear solution techniques rely on discriminative benchmark tests drawn from the literature to assess the advantages and drawbacks of new formulations. Buckling benchmark tests provide a rigorous evaluation of finite elements applied to thin structures, and a complete and detailed set of reference results would therefore prove very useful in carrying out such evaluations. Results are usually presented in the form of load-deflection curves that developers must reconstruct by extracting the points, a procedure which is often tedious and inaccurate. Moreover the curves are usually given without accompanying information such as the calculation time or number of iterations it took for the model to converge, even though this type of data is equally important in practice. This paper presents ten different limit-point buckling benchmark tests, and provides for each one the reference load-deflection curve, all the points necessary to recreate the curve in tabulated form, analysis data such as calculation time, number of iterations and increments, and all of the inputs used to obtain these results.

Behavior of concrete columns confined with both steel angles and spiral hoops under axial compression

  • Zhou, Chunheng;Chen, Zongping;Shi, Sheldon Q.;Cai, Liping
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.747-759
    • /
    • 2018
  • This study proposed a new type of concrete column that was confined with both steel angles and spiral hoops, named angle-steel and spiral confined concrete (ASCC) column. A total of 22 ASCC stub columns were tested under axial compression to investigate their behavior. For a comparison, three angle-steel reinforced concrete (ARC) stub columns were also tested. The test results indicated that ASCC column had a superior mechanical performance. The strength, ductility and energy absorption were considerably increased due to the improvement of confinement from spiral hoops. The confinement behavior and failure mechanism of ASCC column were investigated by the analysis of failure mode, load-deformation curve and section-strain distribution. Parametric studies were carried out to examine the influences of different parameters on the axial compression behavior of ASCC columns. A calculation approach was developed to predict the ultimate load carrying capacity of ASCC columns under axial compression. It was validated that the predicted results were in well agreement with the experimental results.

Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.327-335
    • /
    • 2017
  • To gain more knowledge of aluminum foam sandwich structure and promote the engineering application, aluminum foam sandwich consisting of 7050 matrix aluminum foam core and 304 stainless steel face-sheets was studied under three-point bending by WDW-T100 electronic universal tensile testing machine in this work. Results showed that when aluminum foam core was reinforced by 304 steel face-sheets, its load carrying capacity improved dramatically. The maximum load of AFS in three-point bending increased with the foam core density or face-sheet thickness monotonically. And also when foam core was reinforced by 304 steel panels, the energy absorption ability of foam came into play effectively. There was a clear plastic platform in the load-displacement curve of AFS in three-point bending. No crack of 304 steel happened in the present tests. Two collapse modes appeared, mode A comprised plastic hinge formation at the mid-span of the sandwich beam, with shear yielding of the core. Mode B consisted of plastic hinge formation both at mid-span and at the outer supports.

A Study of Assessment for Fatigue Strength of EH Steels at Fillet Welded Joints using 1mm Stress Method (1mm 응력 기법을 적용한 EH 강재 필릿 용접 이음부 피로 강도 평가)

  • Xin, Wen-Jie;Oh, Dong-Jin;Kim, Young-Nam;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • In this study, Non-load-carrying EH Grade steels in fillet welded joints were evaluated with both the hot spot stress method and the 1mm stress method. The thickness effect criterion for fatigue strength evaluation of welded of welded steel structures recommendations of the IIW was used to evaluate the fatigue strength of EH40 and EH36 and Both EH40 and EH36 have been compared with FAT 125 curve recommended in the IIW. Furthermore, fatigue strength of the welded tow and the ground conditions for Non-load-carrying EH36 based on the 1mm stress method has been discussed.

On the direct strength and effective yield strength method design of medium and high strength steel welded square section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.497-516
    • /
    • 2014
  • The ultimate carrying capacity of axially loaded welded square box section members made of medium and high strength steels (nominal yield stresses varying from 345 MPa to 460 MPa), with large width-to-thickness ratios ranging from 35 to 70, is analyzed by finite element method (FEM). At the same time, the numerical results are compared with the predicted results using Direct Strength Method (DSM), modified DSM and Effective Yield Strength Method (EYSM). It shows that curve a, rather than curve b recommended in Code for design of steel structures GB50017-2003, should be used to check the local-overall interaction buckling strength of welded square section columns fabricated from medium and high strength steels when using DSM, modified DSM and EYSM. Despite all this, EYSM is conservative. Compared to EYSM and modified DSM, DSM provides a better prediction of the ultimate capacities of welded square box compression members with large width-thickness ratios over a wide range of width-thickness ratios, slenderness ratios and steel grades. However, for high strength steels (nominal yield strength greater than 460 MPa), the numerical and existent experimental results indicate that DSM overestimates the load-carrying capacities of the columns with width-thickness ratio smaller than 45 and slenderness ratio less than 80. Further, for the purpose of making it suitable for a wider scope, DSM has been modified (called proposed modified DSM). The proposed modified DSM is in excellent agreement with the numerical and existing experimental results.