• 제목/요약/키워드: Load bearing wall

검색결과 126건 처리시간 0.024초

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

PHC-W 흙막이 벽체를 이용한 건축물 지하증설벽체에서 PHC-W말뚝의 선단지지력 산정에 관한 연구 (A Study on Estimation of End Bearing Capacity of a PHC-W Pile in Building Underground Additional Wall Using the PHC-W Earth Retaining Wall)

  • 김채민;윤대희;이창욱;;김성수;최용규
    • 한국지반공학회논문집
    • /
    • 제35권3호
    • /
    • pp.5-16
    • /
    • 2019
  • 최근 도시 인구의 밀집으로 대형구조물의 건설이 증가하고 있으며 이와 더불어 대형구조물의 기초도 발전하고 있다. 2000년대 말에 일본의 기술을 도입하여 PHC말뚝은 많은 구조물에 사용되고 있다. 최근 PHC말뚝의 장점을 이용하여 흙막이 벽체로의 사용에 대한 연구가 많이 진행되고 있으며, 이 연구에서는 PHC-W 흙막이 벽체를 이용한 건축물 지하증설벽체에서 PHC-W말뚝을 주열식으로 시공하여 연직 압축정재하시험을 실시하였으며, 하중전이 측정을 통하여 PHC-W말뚝의 선단지지력을 산정하였다. 풍화암에 근입된 PHC-W말뚝의 지지력은 기존 PHC말뚝의 지지력과는 차이를 보였으므로, 주열식으로 시공된 PHC-W말뚝의 선단지지력 산정식을 제안하였다. 풍화암에 근입된 PHC-W말뚝의 단위극한선단지지력 산정식으로 주열식 군PHC-W말뚝과 단일PHC-W말뚝에서 각각 $q_b=6.8N_b$$q_b=13.3N_b$로 제안할 수 있었다.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.

주기하중 하에서 철근 콘크리트 전단벽체와 철골 연결보 접합부의 내진성능 (Seismic Performance of Steel Coupling Beam and RC Shear Wall under Lateral Cyclic Load)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제27권6호
    • /
    • pp.591-602
    • /
    • 2015
  • 이 논문에서는 철골 연결보와 철근 콘크리트 전단벽체의 내진성능을 평가하고자 주기하중 실험을 수행하였다. 실험의 주요 변수는 벽체의 보강 상세이었다. 현행 설계 기준을 따라 설계된 병렬 전단벽체는 콘크리트의 지압강도로 인해 조기 파괴되었다. 한편, 매립길이 내에 추가적인 수직 및 수평 보강재로 보강된 벽체의 경우, 지압파괴가 방지되는 것으로 나타났다. 실험결과, 벽체의 수직철근은 수평철근보다 병렬 전단벽의 전단 강도에 더 영향을 끼치는 것으로 나타났다. 매립 철골 보 플랜지 상 하부에서 발생하는 콘크리트의 응력분포를 가정하여, PC 병렬 전단벽체 내의 소요 철근의 양이 결정되었으며, 이를 이용하여 예측 강도 식을 제안하였다. 예측된 강도식은 실험값과 비교적 잘 일치하였다.

냉간성형강 스터드 합성벽 패널의 보/기둥 해석기법의 전산화 (Programming of Beam/Column Analytical Process for Composite Wall Panels)

  • 이영기
    • 한국강구조학회 논문집
    • /
    • 제17권1호통권74호
    • /
    • pp.45-52
    • /
    • 2005
  • 본 연구의 대상은 두개의 박판 냉간성형 C형강 스터드와 벽체 마감재로 구성되어 있다. 보거동 해석에서는 풍하중을 받고 있는 벽체로 가정하여 패널 축방향에 대하여 횡방향으로 등분포하중이 작용하는 단순지지보로 간주하여 해석한다. 그리고 합성패널의 주요 강도감소인자를 고려한 처짐을 산정한다. 또한 기둥거동에서는 합성패널을 내력벽으로 가정하여 축방향 압축력이 작용하는 기둥으로 간주하여 해석한다. 이 패널은 근사해법인 에너지법을 사용하여 휨 좌굴 하중과 휨-비틂 좌굴 하중을 고려한 공칭 압축강도를 산정할 수 있다. 상기과정은 개발된 전산 프로그램을 이용하여 가용한 실험 결과와 비교하여 검증된다. 보거동에 있어서 실험치가 이론치의 97%의 근사치를 보였고, 기둥거동에서도 이론치에 대한 실험치 압축강도가 유사함을 보였다.

Mechanical behavior of steel tube encased high-strength concrete composite walls under constant axial load and cyclically increasing lateral load: Experimental investigation and modeling

  • Liang Bai;Huilin Wei;Bin Wang;Fangfang Liao;Tianhua Zhou;Xingwen Liang
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.37-50
    • /
    • 2023
  • This paper presented an investigation into steel tubes encased high-strength concrete (STHC) composite walls, wherein steel tubes were embedded at the boundary elements of high-strength concrete walls. A series of cyclic loading tests was conducted to evaluate the failure pattern, hysteresis characteristics, load-bearing capacity, deformability, and strain distribution of STHC composite walls. The test results demonstrated that the bearing capacity and ductility of the STHC composite walls improved with the embedding of steel tubes at the boundary elements. An analytical method was then established to predict the flexural bearing capacity of the STHC composite walls, and the calculated results agreed well with the experimental values, with errors of less than 10%. Finally, a finite element modeling (FEM) was developed via the OpenSees program to analyze the mechanical performance of the STHC composite wall. The FEM was validated through test results; additionally, the influences of the axial load ratio, steel tube strength, and shear-span ratio on the mechanical properties of STHC composite walls were comprehensively investigated.

대형 틸팅패드 저어널베어링의 성능에 미치는 온도상승 및 난류의 효과에 관한 연구 (A Study on the Effects of Temperature Rise and Turbulence on the Performance of Large Tilting Pad Journal Bearings)

  • 하현천;김경웅
    • Tribology and Lubricants
    • /
    • 제9권1호
    • /
    • pp.22-31
    • /
    • 1993
  • The thermohydrodynamic performance of large tilting pad journal bearings is analyzed, taking into account the three dimensional variation of lubricant viscosity. The eddy viscosity model based on wall formula is applied. The effects of temperature rise and turbulence on the bearing performance are studied in comparision with the isothermal or the laminar analysis. It is shown that these effects have significant influence on temperature distribution, load capacity and power loss of the bearing.

Strengthening of hollow brick infill walls with perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Seydanlioglu, Mahmut
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.181-199
    • /
    • 2014
  • The infill walls, whose contribution to the earthquake resistance of a structure is generally ignored due to their limited lateral rigidities, constitute a part of the lateral load bearing system of an RC frame structure. A common method for improving the earthquake behavior of RC frame structures is increasing the contribution of the infill walls to the overall lateral rigidity by strengthening them through different techniques. The present study investigates the influence of externally bonded perforated steel plates on the load capacities, rigidities, and ductilities of hollow brick infill walls. For this purpose, a reference (unstrengthened) and twelve strengthened specimens were subjected to monotonic diagonal compression. The experiments indicated that the spacing of the bolts, connecting the plates to the wall, have a more profound effect on the behavior of a brick wall compared to the thickness of the strengthening plates. Furthermore, an increase in the plate thickness was shown to result in a considerable improvement in the behavior of the wall only if the plates are connected to the wall with closely-spaced bolts. This strengthening technique was found to increase the energy absorption capacities of the walls between 4 and 14 times the capacity of the reference wall. The strengthened walls reached ultimate loads 30-160% greater than the reference wall and all strengthened walls remained intact till the end of the test.

연약지반에서 날개벽 기초의 침하량 산정 (Settlement Behavior of Wing-wall type Foundation on Soft Grounds)

  • 장시경;이광열;황재홍;정진교
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1164-1169
    • /
    • 2009
  • Piled raft foundation is commonly used for structure on deep soft soil deposit rather than end bearing piles to control differential settlement. However, it is still expensive for light weight structures. Wing-wall type foundation has been successfully applied to reduce average settlement for light weight structure. This study will further investigate this type of foundation using bench scale experiments on clay and sand. Numerical analysis and approach method are used to verify load settlement curve of wing-wall foundation on experimentally study. Furthermore, normalized settlement curves are applied to define prediction of settlement on wing-wall foundation. In the result settlement on wing-wall foundation can be effectively done by increasing the length of wall instead of number of walls and equation for calculating average settlement can be derived using normalized load settlement curve.

  • PDF