• Title/Summary/Keyword: Load bearing ratio of raft

Search Result 19, Processing Time 0.026 seconds

Finite Difference Modeling of a Piled Raft Foundation with Axisymmetry Condition and Interface Element (축대칭 조건 및 경계면 요소를 이용한 Piled Raft 기초의 유한차분 모델링 연구)

  • You, Kwang Ho;Kim, Hyung Ryul;Bae, Sang Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.853-861
    • /
    • 2015
  • In this study, FDM modelling with axisymmetry condition and interface element was verified whether it is reasonable to estimate compositive behavior of a piled raft foundation. To this end, the modelling validity of piled raft foundations was estimated by comparing and analyzing numerical analysis results and laboratory model test results. Also, load bearing ratio of a raft is analyzed by performing sensitivity analysis of foundation parameters with the actual field conditions. As a result of this study, correlation between bearing capacity and vertical displacement of numerical results turned out to be similar with that of a laboratory model test. In addition, ultimate bearing capacity of piled rafts and load bearing ratio of the raft is calculated to be similar in both cases. The load bearing ratio of the raft was also estimated to be in the range of 33% to 52% from the sensitivity analysis. The results were confirmed to be similar to the previous studies. Therefore, it can be inferred that piled rafts can be effectively modelled applying axisymmetry condition and interface element.

Development of Design Method of Disconnected Piled Raft Foundation System (기초분리말뚝 공법의 설계기법 개발)

  • Choi, Jung-In;Min, Ki-Hoon;Kim, Sung-Ho;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

Laboratory Test of Piled-Raft Foundation Improved by Gravel Mat (Gravel Mat로 보강된 말뚝지지 전면기초의 실내모형실험)

  • Seo, Young-Kyo;Lee, Jeong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.47-54
    • /
    • 2011
  • A piled raft foundation is one of the systems used to reduce the settlement of structures. However, the general design method for a piled raft foundation system assumes that the piles only support external loads, which exclude the bearing capacity of the raft itself. In this study, an experimental model test was performed to evaluate the raft capacity for the external load on the sand. Additionally, a part of the sandy ground under the raft was replaced with a gravel mat to reinforce the piled raft foundation system and increase the bearing capacity. Then, parametric studies of the reinforced ground were performed to determine the displacement and load-sharing ratio of the piled raft foundation system.

Lateral load sharing and response of piled raft foundation in cohesionless medium: An experimental approach

  • Dinesh Kumar Malviya;Manojit Samanta
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • The piled raft foundations are subjected to lateral loading under the action of wind and earthquake loads. Their bearing behavior and flexural responses under these loadings are of prime concern for researchers and practitioners. The insufficient experimental studies on piled rafts subjected to lateral loading lead to a limited understanding of this foundation system. Lateral load sharing between pile and raft in a laterally loaded piled raft is scarce in literature. In the present study, lateral load-displacement, load sharing, bending moment distribution, and raft inclinations of the piled raft foundations have been discussed through an instrumented scaled down model test in 1 g condition. The contribution of raft in a laterally loaded piled raft has been evaluated from the responses of pile group and piled raft foundations attributing a variety of influential system parameters such as pile spacing, slenderness ratio, group area ratio, and raft embedment. The study shows that the raft contributes 28-49% to the overall lateral capacity of the piled raft foundation. The results show that the front pile experiences 20-66% higher bending moments in comparison to the back pile under different conditions in the pile group and piled raft. The piles in the piled raft exhibit lower bending moments in the range of 45-50% as compared to piles in the pile group. The raft inclination in the piled raft is 30-70% less as compared to the pile group foundation. The lateral load-displacement and bending moment distribution in piles of the single pile, pile group, and piled raft has been presented to compare their bearing behavior and flexural responses subjected to lateral loading conditions. This study provides substantial technical aid for the understanding of piled rafts in onshore and offshore structures to withstand lateral loadings, such as those induced by wind and earthquake loads.

Analysis of load sharing characteristics for a piled raft foundation

  • Ko, Junyoung;Cho, Jaeyeon;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.449-461
    • /
    • 2018
  • The load sharing ratio (${\alpha}_{pr}$) of piles is one of the most common problems in the preliminary design of piled raft foundations. A series of 3D numerical analysis are conducted so that special attentions are given to load sharing characteristics under varying conditions, such as pile configuration, pile diameter, pile length, raft thickness, and settlement level. Based on the 3D FE analysis, influencing factors on load sharing behavior of piled raft are investigated. As a result, it is shown that the load sharing ratio of piled raft decreases with increasing settlement level. The load sharing ratio is not only highly dependent on the system geometries of the foundation but also on the settlement level. Based on the results of parametric studies, the load sharing ratio is proposed as a function of the various influencing factors. In addition, the parametric analyses suggest that the load sharing ratios to minimize the differential settlement of piled raft are ranging from 15 to 48% for friction pile and from 15 to 54% for end-bearing pile. The recommendations can provide a basis for an optimum design that would be applicable to piled rafts taking into account the load sharing characteristics.

Piled Raft Foundations (말뚝지지 전면기초)

  • Kwon, Oh-Kyun;Lee, Whoal
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.102-117
    • /
    • 2002
  • The general design practice for piled footings is based on the assumption that the piles are free-standing, and that all the external loads are carried by the piles, with any contribution of the footing being ignored. This approach is not reasonable, because the footing itself is actually in direct contact with the soil, and thus carries a significant fraction of the loads. In the case of not considering the bearing capacity of footing, the bearing capacity of group piles can be evaluated conservatively in the designing the group piles. There are a number of reasons why the idea of piled raft design with considering the capacity of footing has not become widely used. One of the reasons is the lack of reliable calculation methods for estimating the behavior of piled raft. In this study the bearing capacity, settlement, load distribution, etc. of piled raft footing are studied.

  • PDF

Optimum Design of Piled Raft Foundations Using Genetic Algorithm(II) - Comparison with Laboratory Model Test Results - (유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계(II) - 실내모형실험결과의 비교 -)

  • 김홍택;강인규;박순규;박정주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.379-386
    • /
    • 2001
  • Piled raft foundations are usually used to reduce total and differential settlements of superstructures. In the piled raft foundations, the raft is often on its own able to provide adequate bearing capacity and only few widely spaced piles are added to the foundation to keep settlements be1ow a certain limit. In this paper, experimental studies on the load sharing ratio between piles and raft are carried out. Also, for evaluating the application of optimum design technique using a genetic algorithm, optimal locations of files are compared with the results of laboratory model tests. from tile results of laboratory model tests, there are found that the load sharing ratio between files and raft is depended on the number of piles and stiffness of raft, and the optimal locations of piles became concentrated on the middle of rafts. From these results of laboratory model tests, the optimum technique using a genetic algorithm is acknowledged to the application in the piled raft.

  • PDF

Effects of Raft Flexibility on the Behavior of Piled Raft Foundations in Sandy Soil (사질토에 근입된 말뚝지지 전면기초의 기초판 연성률에 따른 거동 분석)

  • Song, Su-Min;Shin, Jong-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.5-16
    • /
    • 2023
  • The effect of raft flexibility on piled raft foundations in sandy soil was investigated using a numerical analysis and an analytical study. The investigation's emphasis was the load sharing between piles and raft following the raft rigidity (KR), end-bearing conditions. The case of individual piles and subsequently the response of groups of piles was analyzed using a 3D FEM. This study shows that the αpr, load-sharing ratio of piled raft foundations, decreases as the vertical loading increases and as the KR decreases. This tendency is more obvious when using friction piles compared to using end-bearing piles. The effect of raft rigidity is found to be more significant for the axial force distribution - each pile within the foundations has almost similar axial forces of the pile head with a flexible raft; however, each pile has different values with rigid rafts, especially with the end-bearing piles. The axial force of the pile base with floating piles shows similar point-bearing resistance for all the piles; however, it shows different values with end-bearing piles. The differential settlement ratio of rafts showed a larger value with lower KR.

Load Sharing Analysis of Piled Rafts Based on Non-linear Load-Settlement Characteristics (Piled Raft 기초의 비선형 하중-침하 특성을 고려한 하중분담 해석)

  • Choi, Kyu-Jin;Park, Dong-Gyu;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.33-40
    • /
    • 2012
  • The design of Piled Raft foundations considering the load sharing between raft and piles provides a more economical solution than the conventional design approach based on bearing capacity of piles only. Generally, numerical methods are used to analyze the behavior of Piled Rafts due to its complexity and load sharing ratio is also estimated by numerical methods about some limited cases under specific load level and soil conditions. In this study, a method to estimate the load sharing between the raft and piles was developed which is based on load-settlement characteristics of foundation elements. Normalized load-settlement curves of the raft and pile groups were derived individually, and the relationship between load sharing ratio and foundation settlement was proposed by using these curves. For each load-settlement curves, hyperbolic type was adopted in order to describe the non-linear behavior of foundations. Centrifuge test results were compared with the results from proposed method, and the trends of variation of load sharing ratio with settlement presented from both were similar.

Effects of rock-support and inclined-layer conditions on load carrying behavior of piled rafts

  • Roh, Yanghoon;Kim, Garam;Kim, Incheol;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, the load carrying behavior of piled rafts installed in inclined bearing rock layer was investigated for rock-mounted and -socketed conditions. It was found that settlements induced for an inclined bearing rock layer are larger than for a horizontal layer condition. The load capacity of piled rafts for the rock-mounted condition decreased as rock-layer inclination angle (${\theta}$) increased, while vice versa for the rock-socketed condition. The load capacities of raft and piles both decreased with increasing ${\theta}$ for the rock-mounted condition. When bearing rock layer was inclined, loads carried by uphill-side piles were greater than those by downhill-side piles. The values of differential settlements of rock-mounted and -socketed conditions were not significantly different whereas slightly higher for the rock-socketed condition. The values of load sharing ratio (${\alpha}_p$) and its variation with settlement were not markedly changed by the inclination of bedrock. It was shown that ${\alpha}_p$ for piled rafts installed in rock layer was not affected by ${\theta}$ whereas actual loads carried by raft and piles may vary depending on the pile installation and rock-layer inclination conditions.