• 제목/요약/키워드: Load Tracking

Search Result 435, Processing Time 0.023 seconds

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Jung, Seung-Hwan;Choy, Ick;Cho, Whang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of Interior Permanent Magnet Synchronous Motor (IPMSM). First, in order to improve the performance of speed tracking, a nonlinear back-stepping controller is designed. In addition, since it is difficult to achieve the high quality control performance without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. Finally, for the efficiency of power consumption of the motor, controller is designed to operate motor with the minimum current for the required maximum torque. The proposed controller is tested through experiment with a 1-hp Interior Permanent Magnet Synchronous Motor (IPMSM) for the angular velocity reference tracking performance and load torque volatility estimation, and to test the Maximum Torque per Ampere (MTPA) operation. The result verifies the efficacy of the proposed controller.

A Photovoltaic Power Management System using a Luminance-Controlled Oscillator for USN Applications

  • Jeong, Ji-Eun;Bae, Jun-Han;Lee, Jinwoong;Lee, Caroline Sunyong;Chun, Jung-Hoon;Kwon, Kee-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2013
  • This paper presents a power management system of the dye-sensitized solar cell (DSSC) for ubiquitous sensor network (USN) applications. The charge pump with a luminance-controlled oscillator regulates the load impedance of the DSSC to track the maximum power point (MPP) under various light intensities. The low drop-out regulator with a hysteresis comparator supplies intermittent power pulses that are wide enough for USN to communicate with a host transponder even under dim light conditions. With MPP tracking, approximately 50% more power is harvested over a wide range of light intensity. The power management system fabricated using $0.13{\mu}m$ CMOS technology works with DSSC to provide power pulses of $36{\mu}A$. The duration of pulses is almost constant around $80{\mu}s$ (6.5 nJ/pulse), while the pulse spacing is inversely proportional to the light intensity.

Design of On-Chip Solar Energy Harvesting Circuit with MPPT Control (MPPT 제어 기능을 갖는 온칩 빛에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Park, Jun-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.425-428
    • /
    • 2011
  • This paper presents a micro-scale solar energy harvesting circuit with a simple MPPT control. Solar Energy is harvested using a small off-chip PV cell generating output voltages under 0.5V instead of an on-chip PV cell. A simple MPPT is implemented using a pilot PV cell and utilizing the relationship between the open-circuit voltage of a PV cell ($V_{OC}$) and its MPP voltage ($V_{MPP}$). With applying the MPPT control, the designed circuit delivers the MPP voltage to load even though the loads is heavy such that the load circuit can operate properly. The proposed circuit is designed in TSMC 0.18um CMOS process.

  • PDF

Design of Vibration Harvesting Circuit using the MPPT control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yun, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.392-395
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using the piezoelectric element has been designed. MPPT (maximum power point tracking control) control function has been implemented to deliver the maximum power to the load by using the electric power-voltage characteristic of the piezoelectric element. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the full wave rectifier circuit and delivers the maximum available power to the load. The vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. The maximum power efficiency is 91%, and the chip area except pads is $1,100{\mu}m{\times}730{\mu}m$.

  • PDF

Discrete Time Tracking Control of Motor Based on Disturbance Observer (외란 관측기 기반의 이산시간 전동기 추종제어)

  • Jeon, Yong-Ho;Kang, Jung-Yoog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.511-518
    • /
    • 2021
  • In order to obtain a good tracking performance of the motor, it is necessary to design a controller that can respond to a disturbance by including a disturbance observer. The disturbance observer of the motor is designed to estimate the load torque and the back electromotive voltage based on the first-order low-pass filter. A PI controller and an IP controller were designed to compare the correlation between the disturbance observer and the controller and to obtain improved control performance. To check the performance of the designed observer and the controller, it was applied to a 120 [W] class BLDC motor. As a result, overshoot is reduced, and it can be seen that the steady-state error converges to zero.

Speed control of IPMSM using the Disturbance Estimator (외란 추정기를 이용한 매입형 영구자석 동기전동기의 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.867-872
    • /
    • 2022
  • The effect of load is an important factor in precise speed control of a motor. n this study, we design a state observer that can estimate and define one state of disturbance including errors and nonlinear terms of mathematical models, which is not easy with a mathematical model. Then, the observation gain is set so that the estimation error of the state observation converges to 0, and the estimated state is used in the back stepping controller to design a controller capable of precise speed tracking. As a result of applying to 1 [hw] class Interior Permanent Magnet Synchronous Motor, excellent stste variable observation and tracking performance can be confirmed.

Design of Tower Damper Gain Scheduling Algorithm for Wind Turbine Tower Load Reduction (풍력터빈 타워 하중 저감을 위한 타워 댐퍼 게인 스케줄링 알고리즘 설계)

  • Kim, Cheol-Jim;Kim, Kwan-Su;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This paper deals with the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine. The controller which include MPPT (Maximum power point tracking) control algorithm and tower load reduction control algorithm was designed by MATLAB Simulink. This paper propose a tower damper algorithm to improve the existing tower damper algorithm. To improve the existing tower damper algorithm, proposed tower damper algorithm were applied the thrust sensitivity scheduling and PI control method. The thrust sensitivity scheduling was calculated by thrust force formula which include thrust coefficient table. Power and Tower root moment DEL (Damage Equivalent Load) was set as a performance index to verify the load reduction algorithm. The simulation were performed 600 seconds under the wind conditions of the NTM (Normal Turbulence Model), TI (Turbulence Intensity)16% and 12~25m/s average wind speed. The effect of the proposed tower damper algorithm is confirmed through PSD (Power Spectral Density). The proposed tower damper algorithm reduces the fore-aft moment DEL of the tower up to 6% than the existing tower damper algorithm.

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.

Automatic frequency Control Current-Source Inverter for Forging Application

  • Chudjuarjeen, Saichol;Koompai, Chayant;Monyakul, Veerapol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.238-242
    • /
    • 2004
  • The paper describes an automatic frequency control current-fed inverter for forging applications. The IGBT in series with diodes as its switching devices in the inverter circuit which is of full-bridge type. The operating frequency is automatically tracked to maintain a small constant leading phase angle when load parameters change. The load voltage is controlled to protect the switches. The output power can be adjusted by varying the input current from phase controlled rectifiers which is a part of current source. The system has been operated at 15-17 kHz. The output power transferred to the load is 1,595 watts. It can heat the steel work pieces with 15 mm diameter and 120 mm long from room temperature to approximately 1100 $^{\circ}C$ within 20 seconds with 0.97 leading power factor on the input side.

  • PDF

A New Resonant H/B Inverter Having Load Freewheeling Modes (부한 환류모드를 갖는 새로운 반 브리지 공진형인버터)

  • Yeon, Jae-Eul;Cho, Kyu-Min;Oh, Won-Seok;Kim, Hee-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.153-156
    • /
    • 2004
  • This paper presents a new circuit topology of the half-bridge resonant inverter. As the proposed half-bridge inverter can be operated in the load freewheeling modes, pulse width modulation (PWM) control method can be used for the output power control. The proposed half-bridge inverter should keep unity output displacement factor under the load-impedance varying conditions, if a new PWM control scheme based on the resonant frequency tracking algorithm is adopted. In this paper, electrical characteristics, and losses analysis of the proposed half-bridge resonant inverter are described. Simulation and experimental results of the prototype experimental setup to verify the validity of the proposed half-bridge resonant inverter are presented and discussed.

  • PDF