• Title/Summary/Keyword: Load Sensing Control

Search Result 99, Processing Time 0.02 seconds

An Analysis for the Efficient Dissemination of Beacon Messages in Vehicle-to-Vehicle (V2V) Communications (자동차 간 통신에서 비컨 메시지의 효율적인 방송을 위한 성능 분석)

  • Nguyen, Hoa-Hung;Bhawiyuga, Adhitya;Jeong, Han-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.483-491
    • /
    • 2012
  • In vehicle-to-vehicle (V2V) communications, each vehicle should periodically disseminate a beacon message including the kinematics information, such as position, speed, steering, etc., so that a neighbor vehicle can better perceive and predict the movement of the vehicle. However, a simple broadcasting of such messages may lead to a low reception probability as well as an excessive delay. In this paper, we attempt to analyze the impact of the following key parameters of the beacon dissemination on the performance of vehicular networks: beacon period, carrier-sensing range, and contention window (CW) size. We first derive a beacon period which is inversely proportional to the vehicle speed. Next, we mathematically formulate the maximum beacon load to demonstrate the necessity of the transmit power control. We finally present an approximate closed-form solution of the optimal CW size that leads to the maximum throughput of beacon messages in vehicular networks.

An Adaptive Control of Individual Channels' Transmission Power in Femtocells (펨토셀 환경에서 채널별 전송전력의 적응적 제어 기법)

  • Lee, Hoseog;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.762-771
    • /
    • 2012
  • In this paper, we propose an adaptive power control scheme employing a self-optimization concept in femtocell systems, in order to improve system capacity, thereby reducing call-drop probability. In the proposed scheme, each femto base station(FBS) controls individual channel's transmission power base on two parameters; the neighboring cell's transmission power for each individual channel which is delivered from a femto-gateway and the received power strength from neighboring cells which is periodically measured by means of a spectrum sensing. Adaptive adjustment of individual channel's transmission power in accordance with femto mobile station(FMS) mobility features can also reduce undesirable handovers and evenly distribute traffic load over all femtocells. In addition, the manipulative control of channel's transmission power is able to keep the system coverage and the call-drop probability within an acceptable range, regardless of density of femtocells. Computer simulation shows that the proposed scheme outperforms existing schemes in terms of the system coverage and the call-drop probability.

The PV MPPT & Charge and Discharge Algorithm for the Battery Included Solar Cell Applications (배터리 내장형 초소형 태양광 장치용 PV MPPT 및 충방전 제어 알고리즘)

  • Kim, Seung-Min;Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lae, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.69-75
    • /
    • 2013
  • To increase the efficiency of the photovoltaic, almost photovoltaic appliances are controlled by Maximum Power Point Tracking(MPPT). Existing most of the PV MPPT techniques have used power which multiplies sensed output current and voltage of the solar cell. However, these algorithms are unnecessarily complicated and too expensive for small and compact system. The other hand, the proposed MPPT technique is only one sensing of the MPPT converter's output current, so there is no need to insert another sensors of battery side. Therefore, this algorithm is simpler compared to the traditional approach and is suitable for low power solar system. Further, the novel proper charge/discharge algorithm for the battery with PV MPPT is developed. In this algorithm, there is CC battery charge mode and load discharge mode of the PV cell & battery dual. Also we design current control to regulate allowable current during the battery charging. The proposed algorithm will be applicable to battery included solar cell applications like solar lantern and solar remote control car. Finally, the proposed method has been verified with computer simulation.

The Design of Dynamic Fog Cloud System using mDBaaS

  • Hwang, Chigon;Shin, Hyoyoung;Lee, Jong-Yong;Jung, Kyedong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.59-66
    • /
    • 2017
  • Cloud computing has evolved into a core computing infrastructure for the internet that encompasses content, as well as communications, applications and commerce. By providing powerful computing and communications capabilities in the palm of the hand everywhere with a variety of smart devices, mobile applications such as virtual reality, sensing and navigation have emerged and radically changed the patterns people live. The data that is generated is getting bigger. Cloud computing, on the other hand, has problems with system load and speed due to the collection, processing and control of remote data. To solve this problem, fog computing has been proposed in which data is collected and processed at an edge. In this paper, we propose a system that dynamically selects a fog server that acts as a cloud in the edge. It serves as a mediator in the cloud, and provides information on the services and systems belonging to the cloud to the mobile device so that the mobile device can act as a fog. When the role of the fog system is complete, we provide it to the cloud to virtualize the fog. The heterogeneous problem of data of mobile nodes can be solved by using mDBaaS (Mobile DataBase as a Service) and we propose a system design method for this.

Virtual Sensor Verification Using Neural Network Theory of the Quadruped Robot (보행로봇의 신경망 이론을 이용한 가상센서 검증)

  • Ko, Kwang-Jin;Kim, Wan-Soo;Yu, Seung-Nam;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1326-1331
    • /
    • 2009
  • The sensor data measured by the legged robot are used to recognize the physical environment or information that controls the robot's posture. Therefore, a robot's ambulation can be advanced with the use of such sensing information. For the precise control of a robot, highly accurate sensor data are required, but most sensors are expensive and are exposed to excessive load operation in the field. The seriousness of these problems will be seen if the prototype's practicality and mass productivity, which are closely related to the unit cost of production and maintenance, will be considered. In this paper, the use of a virtual sensor technology was suggested to address the aforementioned problems, and various ways of applying the theory to a walking robot obtained through training with an actual sensor, and of various hardware information, were presented. Finally, the possibility of the replacement of the ground reaction force sensor of legged robot was verified.

Development of 6-axis Force/moment Sensor for Humanoid Robot's Head Reacting to a External Force (외력에 반응하는 인간형 로봇의 머리를 위한 6 축 힘/모멘트 센서 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.78-84
    • /
    • 2009
  • When external force is applied to humanoid robot's head, humanoid robot's neck is rotated to prevent the damage of it. So, robot's neck have to perceive forces (Fx of x-direction, Fy of y-direction and Fz of z-direction) and moments (Mx of x-direction, My of y-direction and Mz of z-direction) using the attached 6-axis force/moment sensor. Thus, in this paper, 6-axis force/moment sensor was developed to sense the forces and moments applied to robot's head. The structure of 6-axis force/moment sensor was modeled newly, and it was designed using FEM software (ANSYS) and manufactured by attaching straingages on the sensing element, finally, the characteristic test of the sensor was carried out. As a result, it is confirmed that interference error is less than 3%. And, it is thought that the sensor can be used to measure the forces and the moments for humanoid robot's head.

A Study on Development of New 3-Phase Open-Phase Protector used in Distribution Panel (새로운 분전반용 3상 결상보호기 개발에 관한 연구)

  • Kwak, D.K.;Kim, J.H.;Park, Y.J.;Jung, D.Y.;Kim, D.K.;Kim, P.R.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.546-547
    • /
    • 2012
  • In the three-phase power system using the three-phase load, when any one-phase is open-phase, the unbalanced current flows and the single-phase power supplied by power supply produces over-current. As a result, the enormous damage and electrical fire can be given to the power system. In order to improve these problems, this paper is proposed a new control circuit topology for open-phase protection using semiconductor devices. Therefore, the proposed open-phase protection device (OPPD) enhances the sensing speed and precision, and has the advantage of simple fitting in the three-phase distribution panel in the field, as it manufactures into small size and light weight. As a result, the proposed OPPD minimizes the electrical fire from open-phase, and contributes for the stable driving of the power system.

  • PDF

Static and dynamic characterization of a flexible scaled joined-wing flight test demonstrator

  • Carregado, Jose;Warwick, Stephen;Richards, Jenner;Engelsen, Frode;Suleman, Afzal
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.117-144
    • /
    • 2019
  • High Altitude and Long Endurance (HALE) aircraft are capable of providing intelligence, surveillance and reconnaissance (ISR) capabilities over vast geographic areas when equipped with advanced sensor packages. As their use becomes more widespread, the demand for additional range, endurance and payload capability will increase and designers are exploring non-conventional configurations to meet the increasing demands. One such configuration is the joined-wing concept. A joined-wing aircraft is one that typically connects a front and aft wings in a diamond shaped planform. One such example is the Boeing SensorCraft configuration. While the joined-wing configuration offers potential benefits regarding aerodynamic efficiency, structural weight, and sensing capabilities, structural design requires careful consideration of elastic buckling resulting from the aft wing supporting, in compression, part of the forward wing structural loading. It has been shown already that this is a nonlinear phenomenon, involving geometric nonlinearities and follower forces that tend to flatten the entire configuration, leading to structural overload due to the loss of the aft wing's ability to support the forward wing load. Severe gusts are likely to be the critical design condition, with flight control system interaction in the form of Gust Load Alleviation (GLA) playing a key role in minimizing the structural loads. The University of Victoria Center for Aerospace Research (UVic-CfAR) has built a 3-meter span scaled and flexible wing UAV based on the Boeing SensorCraft design. The goal is to validate the nonlinear structural behavior in flight. The main objective of this research work is to perform Ground Vibration Tests (GVT) to characterize the dynamic properties of the scaled flight vehicle. Results from the experimental tests are used to characterize the modal dynamics of the aircraft, and to validate the numerical models. The GVT results are an important step towards a safe flight test program.

A Contactless Power Supply for a DC Power Service

  • Kim, Eun-Soo;Kim, Yoon-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.483-491
    • /
    • 2012
  • It is expected that, in the future, DC power service will be widely used for photovoltaic home power generation systems, since DC consuming devices are ever increasing. Instead of using multiple converters to convert DC to AC and then AC to DC, the power service could solely be based on DC. This would eliminate the need for converters, reducing the cost, complexity, and possibly increasing the efficiency. However, configuration of direct DC power service with mechanical contacts can cause spark voltage or an electric shock when the switch is turned on and off. To solve these problems, in this paper, a contactless power supply for a DC power service that can transfer electric power produced by photovoltaics to the home electric system using magnetic coupling instead of mechanical contacts has been proposed. The proposed system consists of a ZVS boost converter, a half-bridge LLC resonant converter, and a contactless transformer. This proposed contactless system eliminates the use of DC switches. To reduce the stress and loss of the boost converter switching devices, a lossless snubber with coupled inductor is applied. In this paper, a switching frequency control technique using the contactless voltage sensing circuit is also proposed and implemented for the output voltage control instead of using additional power regulators. Finally, a prototype consisted of 150W boost converter has been designed and built to demonstrate the feasibility of the proposed contactless photovoltaic DC power service. Experimental results show that 74~83% overall system efficiency is obtained for the 10W~80W load.

DC-DC Converter for Low-Power Power Management IC (저-전력 전력 관리 회로를 위한 DC-DC 변환기)

  • Jeon, Hyeondeok;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.174-179
    • /
    • 2018
  • In this paper, design of high-efficiency DC-DC converter is presented for low-power PMIC (power management integrated circuit). As PMIC technologies for IoT and wearable devices have been continuously improved, high-efficiency energy harvesting schemes should be essential. Since the supply voltage resulting from energy harvesting is low and widely variable, design techniques to achieve high efficiency over a wide input voltage range are required. To obtain a constant switching frequency for wide input voltage range, frequency compensation circuit using supply-voltage variation sensing circuit is included. In order to obtain high efficiency performance at very low-power condition, accurate burst-mode control circuit was adopted to control switching operations. In the proposed DC-DC buck converter, output voltage is set to be 0.9V at the input voltage of 0.95~3.3V and maximum measured efficiency is up to 78% for the load current of 180uA.