DOI QR코드

DOI QR Code

An Adaptive Control of Individual Channels' Transmission Power in Femtocells

펨토셀 환경에서 채널별 전송전력의 적응적 제어 기법

  • 이호석 (삼성전자 소프트웨어센터 Convergence Solution팀 Cloud Computing 연구실) ;
  • 조호신 (경북대학교 IT대학 전자공학부 이동통신연구실)
  • Received : 2012.02.07
  • Accepted : 2012.08.14
  • Published : 2012.09.30

Abstract

In this paper, we propose an adaptive power control scheme employing a self-optimization concept in femtocell systems, in order to improve system capacity, thereby reducing call-drop probability. In the proposed scheme, each femto base station(FBS) controls individual channel's transmission power base on two parameters; the neighboring cell's transmission power for each individual channel which is delivered from a femto-gateway and the received power strength from neighboring cells which is periodically measured by means of a spectrum sensing. Adaptive adjustment of individual channel's transmission power in accordance with femto mobile station(FMS) mobility features can also reduce undesirable handovers and evenly distribute traffic load over all femtocells. In addition, the manipulative control of channel's transmission power is able to keep the system coverage and the call-drop probability within an acceptable range, regardless of density of femtocells. Computer simulation shows that the proposed scheme outperforms existing schemes in terms of the system coverage and the call-drop probability.

본 논문은 펨토셀 환경에서 시스템 용량 향상 및 호손율 감소를 위해 펨토 기지국이 자기 최적화 기법을 이용하여 채널별 전송전력을 적응적으로 제어하는 방법을 제안한다. 펨토셀 관련 국제표준에서는 요구사항으로 펨토셀 밀집 배치에 따라 성능 열화가 없어야 한다는 점을 들고 있다. 제안방식에서는 각 펨토 기지국이 펨토 게이트웨이를 통해 전달받은 이웃 기지국의 채널별 전송전력 정보와 주기적 스펙트럼 감지를 통해 측정한 이웃 펨토셀로부터의 채널별 수신 전력을 바탕으로 자신의 채널별 전송전력을 결정하게 된다. 또한 각 채널별로 펨토 사용자 단말(Femto Mobile Station: FMS)의 이동에 따라 적응적으로 전송전력을 제어함으로써, 핸드오버 감소 및 펨토셀 간 균등한 서비스 기회를 가지도록 한다. 이를 통해 펨토셀 밀집 배치에 따른 성능 열화를 방지할 뿐만 아니라, 펨토셀이 밀집할수록 시스템 용량이 향상되고 호손율이 낮아지는 효과를 얻을 수 있다. 또한 채널별 전송전력을 독립적으로 제어함으로써 커버리지 홀을 줄일 수 있으며, 시스템 내에 존재하는 펨토셀의 개수와 상관없이 항상 일정 수준 이상의 커버리지와 호손율을 유지할 수 있다. 컴퓨터 모의실험을 통해 시스템 용량과 호손율 측면에서 기존 방식과 비교 분석하였으며 그 결과 제안한 방식이 기존 방식보다 우수함을 볼 수 있었다.

Keywords

References

  1. ABI Research. Picochip, airvana, IP access, gartner, telefonica Espana. [Online]. Available: http://www.avrenevents.com/dallas-femto2007/purchase presentations.htm
  2. F. Lehser, "Self organising LTE/SAE network-operator requirements & examples," presented in ITG Fachtagung 25th, Sept. 2006.
  3. S. Lim, T. Kwon, S. Park, and D. Hong, "The scheme for interference reduction and avoidance in femtocell," J. KICS, vol. 25, no. 12, pp. 41-48, Nov. 2008.
  4. C. S. Kim, B. G. Choi, J. Y. Lee, T. J. Lee, H. Choo, and M. Y. Chung, "Femtocell deployment to minimize performance degradation in mobile WiMAX System," in Proc. ICCSA, Part III, LNCS 6018, pp. 85-95, 2010.
  5. M. Z. Chowdhury, Y. M. Jang, and Z. J. Haas, "Interference mitigation using dynamic frequency re-use for dense femtocell network architectures," in Proc. IEEE ICUFN, June 2010.
  6. G. Gur, S. Bayhan, and F. Alagoz, "Cognitive femtocell networks: An overlay architecture for localized dynamic spectrum access," IEEE Trans. Wireless Commun., vol. 17, pp. 62-70, Aug. 2010. https://doi.org/10.1109/MWC.2010.5547923
  7. J. Xiang, Y. Zhang, T. Skeie, and L. Xie, "Downlink spectrum sharing for cognitive radio femtocell networks," IEEE Syst. J., vol. 4, pp. 524-534, Dec. 2010. https://doi.org/10.1109/JSYST.2010.2083230
  8. M. Nazir, M. Bennis, K. Ghaboosi, A. Mackenzie, and M. Latva-aho, "Learning based mechanisms for interference mitigation in self-organized femtocell networks," in Proc. IEEE ASILOMAR, Pacific Grove, USA, Nov. 2010.
  9. I. Guvenc, M. Jeong, F. Watanabe, and H. Inamura, "A hybrid frequency assignment for femtocells and coverage area analysis for co-channel operation," IEEE Commun. Lett., vol. 12, no. 12, Dec. 2008.
  10. IEEE 802.16 WG, "IEEE 802.16m system requirements," Jan. 2009.
  11. V. Chandrasekhar, J. G. Andrews, and A. Gatherer, "Femtocell networks: A survey," IEEE Commun. Mag., vol. 46, no. 9, pp. 59-67, Sept. 2008. https://doi.org/10.1109/MCOM.2008.4623708
  12. H. Claussen, L. T. W. Ho, and L. G. Samuel, "Self-optimization of coverage for femtocell deployments," in Proc. WTS, Apr. 2008, pp. 278-285.
  13. J. Boccuzzi and M. Ruggiero, Femtocell: Design & Application, McGraw-Hill Professional, p. 127, Oct. 2010.
  14. C. H. Koh, K. Park, K. J. Yoon, and Y. Y. Kim, "The concepts and technical overview of SON (Self-Organizing Network)," J. Inf. Netw. Soc., vol. 22, no. 2, Nov. 2008.
  15. C. H. Koh, K. Park, K. J. Yoon, and Y. Y. Kim, "The concepts and technical overview of SON (Self-Organizing Network)," J. Inf. Netw. Soc., vol. 22, no. 2, Nov. 2008.
  16. 3rd Generation Partnership Project: HNB/HeNB Access Conrol. 3GPP TD S2-090733(2009).
  17. A. Golaup, M. Mustapha, and L. B. Patanapongipibul, "Femtocell access control strategy in UMTS and LTE," IEEE Commun. Mag., vol. 47, no. 9, pp. 117-123, Sept. 2009.
  18. Wikipedia, Log-distance path loss model [Online]. Available: http://en.wikipedia.org/wiki/Log-distance_path_loss_model
  19. ITPP. C++ signal processing library [Online]. Availabel: http://sourceforge.net/projects/itpp
  20. B. Liang and Z. J. Haas, "Predictive distance-based mobility management for multidimensional PCS networks," IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 718-732, 2003. https://doi.org/10.1109/TNET.2003.815301
  21. WiMax Forum, "WiMax system evaluation methodology," v1.0, 2007.