• 제목/요약/키워드: Load Properties

검색결과 2,804건 처리시간 0.026초

The Effects of Elbow Joint Angle on the Mechanical Properties of the Common Extensor Tendon of the Humeral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.582-591
    • /
    • 2004
  • The purpose of this study was to determine the effects of elbow joint angle on mechanical properties, as represented by ultimate load, failure strain and elastic modulus, of bone-tendon specimens of common extensor tendon of the humeral epicondyle. Eight pairs of specimens were equally divided into two groups of 8 each, which selected arbitrarily from left or right side of each pair, positioned at 45$^{\circ}$ and 90$^{\circ}$ of elbow flexion and subjected to tension to failure in the physiological direction of the common extensor tendon. For comparison of the differences in the failure and elastic modulus between tendon and the bone-junction, data for both were evaluated individually. Significant reduction in ultimate load of bone-tendon specimens was shown to occur at 45$^{\circ}$. The values obtained from the bone-tendon junctions with regard to the failure strain were significant higher than those from tendon in both loading directions, but the largest failure strain at the bone-tendon junction was found at 45$^{\circ}$. The elastic modulus was found to decrease significantly at the bone-tendon junction when the loading direction switched from 90$^{\circ}$ to 45$^{\circ}$. Histological observation, after mechanical tensile tests, in both loading directions showed that failure occurred at the interface between tendon and uncalcified fibrocartilage in the thinnest fibrocartilage zone of the bone-tendon junction. We concluded that differences in measured mechanical properties are a consequence of varying the loading direction of the tendon across the bone-tendon specimen.

유한요소법을 이용한 타이어 코너링특성 예측에 관한 연구 (A Study for the Prediction of a Tire Cornering Characteristics using a Finite Element Method)

  • 김항우;조규종
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.151-162
    • /
    • 1998
  • During a straight driving and cornering maneuver by a vehicle various forces and moments are exerted on the tire's footprint. A cornering properties, handling and stability performances of vehicle can be predicted by these forces and moments values. Therefore, on this study, a lateral force and a aligning torque are predicted by these forces and moments values. Therefore, on this study, a lateral force and a aligning torque are predicted using a finite element method. Contact area of the tire between bead and wheel are fixed to simplify of a finite element model. Lateral force is exerted on the rigid surface as a real load with Coulum friction after inflate and load vertically. Then, rotate the tire's axle to simulate a free rolling untill taken the equilibrium of a aligning torque. Also, experimental observations are made to test a reliability of a FE analysis conducted in this study. The finite element analysis said that good agreement was obtained with experimental results of these cornering properties, giving confidence within about one percent. So it os recommended that a finite element analysis can be used as a good tool to predicted the tire cornering properties.

  • PDF

Influence of water content on dynamic mechanical properties of coal

  • Gu, Helong;Tao, Ming;Wang, Jingxiao;Jiang, Haibo;Li, Qiyue;Wang, Wen
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.85-95
    • /
    • 2018
  • Water affects the mechanical properties of coal and stress wave propagation. To comprehensively investigate the effect of water content on the properties of coal, laboratory tests including X-Ray Diffraction (XRD) analysis, P-wave test, S-wave test, static and dynamic compression test with different water contents were conducted. The compressive strength, elastic modulus and failure strain and their mechanism of coal specimen under coupled static-dynamic load with the increased water content were observed. Meanwhile, energy transmission and dissipation characteristics of a stress wave in coal specimens with different water contents under dynamic load and its relation with the failure features, such as fragmentation and fractal dimension, of coal was analyzed. Furthermore, the dynamic interpretation of water infusion to prevent coal burst based on water infusion model of coal seam roadway was provided.

싱글모드 파이버 레이저를 이용한 Cu 와 Ni의 고속도 이종재료 용접부의 기계적 특성 (Mechanical Properties of Cu and Ni Dissimilar Welds by High Welding Speed Using Single-Mode Fiber Laser)

  • 이수진;김종도
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.81-88
    • /
    • 2014
  • As the industrial technology has been developed, a dissimilar welding has been received huge attention in various engineering fields. To understand the mechanical properties and possibility of applications of dissimilar metals joining, the laser welding of Cu and Ni dissimilar metals was studied in this paper. Cu and Ni have differences in materials properties, and Cu and Ni make no intermetallic compounds according to typical binary phase of Cu and Ni system. In this study, lap welds of Cu and Ni dissimilar metals using single-mode fiber laser with high welding speed were tried, and mechanical properties of the welds zone were evaluated using a Vickers hardness test and a tensile shear test. To recognize the relation between hardness and tensile shear load, weld fusion zone of interface weld area were observed. And it was confirmed that the ultra-high welding speed could make good weld beads and higher hardness parts had higher tensile shear load under the all conditions.

링 시험편을 이용한 ZIRLO 피복관의 크리프 특성 평가 (The Evaluation of the Creep Properties of ZIRLO Cladding Using the Ring Specimen)

  • 배봉국;구재민;석창성
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.964-969
    • /
    • 2005
  • In this study, we suggested the ring creep test using the ring specimen of Arsene for estimating the burst creep properties of the cladding in stead of burst creep test. For this objective, we used the load-displacement conversion relationship of ring specimen called LCRR which had been determined on our previous study at high temperature by performing the ring tensile test and the numerical analysis. Then we carried out both the ring creep test and the burst creep test between $350^{\circ}C$ and $600^{\circ}C$ which were higher than the in-service temperature of the cladding in a reactor. The creep properties from the ring creep test with applying LCRR were compared with those from the burst creep test of closed-end specimens. From the results, it could be seen an very strong relationship between them, especially in Larson-Miller parameter. So, it is expected that we can easily predict the creep properties of not only claddings but also various small pressure pipes using the ring creep test.

나노 인덴테이션 실험과 유한요소해석을 이용한 전기아연도금강판의 코팅층 체적 거동 결정 (Determination of Deformation Behavior of Coating Layer on Electronic galvanized Sheet Steel using Nano-indentation and FEM)

  • 고영호;이정민;김병민
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.186-194
    • /
    • 2005
  • This study was designed to investigate the mechanical properties of the coating layer on electronic galvanized sheet steel as a part of the ongoing research on the coated steel. Those properties were determined using nano-indentation, the finite element method, and artificial neural networks. First and foremost, the load-displacement curve (the loading-unloading curve) of coatings was derived from a nano-indentation test by CSM (continuous stiffness measurement) and was used to measure the elastic modulus and hardness of the coating layer. The properties derived were applied in FE simulations of a nano-indentation test, and the analytical results were compared with the experimental result. A numerical model for FE simulations was established for the coating layer and the substrate separately. Finally, to determine the mechanical properties of the coating, such as the stress-strain curve, functional equations of loading and unloading curves were introduced and computed using the neural networks method. The results show errors within $5\%$ in comparison with the load-displacement measured by a nano-indentation test.

고온가열을 받은 고강도 콘크리트의 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of High Strength of High Strength Concrete Subject to High Temperature Heating)

  • 이태규;신승봉;김영선;이승훈;김규용;김무한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 춘계학술논문 발표대회
    • /
    • pp.9-12
    • /
    • 2007
  • Recently, research and development related to high strength concrete for the high rise and large scale reinforced concrete building has been actively promoted in worldwide by national and private research project. But, it is reported that violent explosive explosion would be happened when it was exposed in fire. In the existed study, a explosion in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement paste and aggregate, and causes crack by thermal stress. In case of the Europe, Japan and America, they have studied the explosion for a long time. However it would hardly study the explosion in domestic, So it is needed base on mechanical properties of fire deterioration in high strength concrete. Therefore, this study is intend as an mechanical properties of specimen to high heating by heating and load test machine and $700^{\circ}C$. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

On the effect of steel columns cross sectional properties on the behaviours when subjected to blast loading

  • Hadianfard, Mohammad Ali;Farahani, Ahmad;B-Jahromi, Ali
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.449-463
    • /
    • 2012
  • For buildings subjected to blast loading, structural failure can be categorized into local failure (direct blast effects) and progressive collapse (consequential effects). In direct blast effects, the intensive blast pressures create localized failure of structural elements such as exterior columns and walls. Columns, and their behaviour, play a key role in these situations. Therefore investigating the behaviour of columns under blast loading is very important to estimate the strength, safety and reliability of the whole structure. When a building is subjected to blast loading, it experiences huge loading pressures and undergoes great displacement and plastic behaviour. In order to study the behaviour of an element under blast loading, in addition to elastic properties of materials, plastic and elastic-plastic properties of materials and sections are needed. In this paper, using analytical studies and nonlinear time-history analysis by Ansys software, the effects of shape of column sections and boundary conditions, on behaviour and local failure of steel columns under blast load are studied. This study identifies the importance of elastic-plastic properties of sections and proposes criteria for choosing the best section and boundary conditions for columns to resist blast loading.

초탄성 고무 물성평가를 위한 구형 압입시험의 수치접근법 (Numerical Approach Technique of Spherical Indentation for Material Property Evaluation of Hyper-elastic Rubber)

  • 이형일;이진행;김동욱
    • Elastomers and Composites
    • /
    • 제39권1호
    • /
    • pp.23-35
    • /
    • 2004
  • 본 연구에서는 먼저 유한요소해석을 통해 주요 물성계수들이 압입시 하중-변위 곡선형상에 미치는 영향을 분석하였다. 또한 유한요소 압입해석을 통해 마찰계수의 영향으로 하중-변위 곡선, 시편하부의 단위부피당 변형에너지 및 변형률 주불변량이 바뀌지 않는 최적 압입깊이와 시편하부지점을 선정하였다. 이러한 관찰을 통해 하나의 요소에서 얻어지는 단위부피당 변형 에너지와 변형률 주불변량을 하중-변위 데이터와 모사 시킬 수 있는 무차원 함수를 얻을 수 있었으며, 이 과정에서 예측된 물성계수를 바탕으로 공칭응력-공칭변형률 곡선을 얻을 수 있었다.

회전단조에 따른 Inconel 706 합금의 미세조직 및 기계적 특성 분석 (Analysis of Mechanical Properties and Microstructure of Inconel 706 Alloy using Rotary Forging)

  • 김효건;조성우;윤은유;이영선;우영윤
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.145-152
    • /
    • 2023
  • The Inconel 706 alloy is a nickel-based super alloy and requires a large load for hot forging due to its excellent mechanical properties at high temperature. Rotary forging process is an innovative metal forging process where workpiece is gradually deformed by the revolving conical upper die with an inclination angle. This process allows that the workpiece is partially in contact with an upper die during the process so that the press force is considerably lower compared with the conventional upsetting process. In this study, experiments of rotary forging process and conventional upsetting process for cylindrical parts using Inconel 706 where conducted to investigate the formability of rotary forging process. And microstructure analysis and mechanical properties of Inconel 706 were performed to investigate the effect of rotary forging process on the material property.