• 제목/요약/키워드: Load Line Displacement

Search Result 107, Processing Time 0.025 seconds

In-Process Diagnosis of Servovalve Wear using Leakage Flow Measurement (누설 유량 계측에 의한 서보밸브 마멸의 인-프로세스 진단)

  • Kim K.H.;Han G.S.;Lee J.C.;Ham Y.B.;Kim S.D.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.1-7
    • /
    • 2004
  • In-process diagnosis is essential to achieve predictive maintenance in industrial plants. An in- process diagnosis method was proposed for hydraulic servo systems, which was based upon leakage flow measurement. Leakage due to servovalve wear was analysed and modeled mathematically far computer simulation work. The key idea of diagnosis algorithm is that when monitoring signals, such as servovalve input and load displacement are in steady states, the return-line flow of hydraulic servo systems can be regarded as null-leakage of servovalve. Virtual experiments were performed to ensure effectiveness of the proposed diagnosis method.

  • PDF

The Stability Evaluation Methods of Embankment on Soft Clay (연약지반 성토의 안정평가 방법)

  • Kang, Yea Mook;Lee, Dal Won;Kim, Ji Hoon;Kim, Tae Woo;Lim, Seong Hun
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.260-270
    • /
    • 1998
  • The field tests were performed to suggest the rational method for stability evaluation of soft clay. The behavior of settlement-displacement obtained by field monitoring system was to compare and analyze the results of the observationed method, and to investigate the complex behavior of soft clay with filling height. The results of this study are summarized as follows. 1. The horizontal displacement was suddenly increased when physical properties of soft clay showed maximum values and the part of the turning point. The values of these properties were available to the fundamental data for stability evaluation. The shear deformation appeared that difference of the horizontal displacement was maximum values. 2. Although the stability of embankment by step filling showed the unstable part over the failure standard line, the embankment was confirmed stable. So the evaluation of the stability of embankment is reasonable to use the inclination of curve than failure standard line. 3. The horizontal displacement and relative settlement were increased as same ratio at improvement ground. Estimation of shear deformation using Terzaghi's modified bearing capacity should consider the relations of embankment load and undrained shear strength at nonimprovement ground, and minimum safety factor is recommended to use larger than 1.2. 4. Excess pore water pressure was increased with increasing of filling height and decreased with maintain the filling height. The embankment was unstable when filling height was exceed the evaluation standard line, and the behavior of excess pore water pressure and horizontal displacement could use as a standard of judgement of the filling velocity control because their behavior were agree with each other.

  • PDF

Buckling Experiment of Eccentric Seismic Bracing Devices for Branch Lines (내진설계용 편심방식 가지배관 고정장치의 좌굴 실험)

  • Changsoo, Oh;Jihoon, Kim;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.9-14
    • /
    • 2024
  • Restraints of Branch Lines are used as earthquake-resistant support devices for fire-fighting pipes along with sway brace devices. The central types are aligned and fixed in a straight line with center of the pipe, but the eccentric types are fixed to on side of the pipe, so a bending moment occurs. In this study, three specimens each of central type and eccentric type were installed at an angle of 45° from the vertical and a monotonic compression load of 1340N was applied. All central type samples satisfied 17.8mm of the allowable displacement, but all eccentric type samples failed to meet the target load and buckled. Therefore, when considering the performance of eccentric type restraints, both compressive load and bending moment must be considered. Even through material mechanics calculations, the yield stress of eccentric type - 3/8 inch all threaded steel bolt - exceeds 320Mpa of the allowable stress. A experiment standards need to be established for eccentric type restraints.

Characteristics of Track Behaviors according to Accelerated Tilting Train Speed (틸팅차량 증속에 따른 기존선 궤도의 거동 특성)

  • Shin, Tae-Hyoung;Choi, Jung-Youl;Eum, Ki-Young;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1653-1661
    • /
    • 2008
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. In the area of wayside structure, the stability of track structure and train run shall be evaluated through the review of impact by increased speed by developed train on track structure. The study thus was intended to evaluate the impact on track while a tilting train is running the conventional line(ballast track), which is vulnerable to accelerated train speed. The evaluation of tilting train test running the part of Honam line was conducted to identify the impact on existing track performance by tilting train. To identify the performance of each part of track components while tilting train and high speed train were running the existing line, wheel load, rail bending stress, vertical displacement of rail and sleeper were compared so as to evaluate the expected impact by tilting train for improving the train speed.

  • PDF

Behavior of Stress and Deformation Generated by Repair Welding under Loading (공용중 보수용접에 의한 용접부의 응력 및 변형의 거동 - 인장력 작용중 균열보수용접에 의해 생기는 응력 및 변형의 거동 -)

  • Chang, Kyong-Ho;Lee, Sang-Hyong;Jeon, Jun-Tai
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.269-279
    • /
    • 2000
  • It is much expected that steel bridges, which have been damaged by increase of vehicle load and corrosion, need repair or strengthening. In this paper, the stress generated by repair welding under loading are analyzed by three dimensional elasto-plastic analyses. The longer and deeper repair weld line bocemes, the larger the magnitude of transient stress becomes. The magnitude of transient stress generated by repair welding under loading $({\sigma}_y/3,\;{\sigma}_a)$ is similar to summation of stresses generated by repair welding and loading. The longer repair weld line ratio(1/b) becomes, the larger the magnitude of transient stress generated by repair welding under loading bocomes. And, the longer repair weld line ratio(1/b) becomes, the larger the magnitude of in-plane displacement generated by repair welding under loading$({\sigma}_y/3,\;{\sigma}_a)$.

  • PDF

Large Deflection and Elastoplastic Analysis of the Plane Framed Structure Using Isoparametric Curved Beam Element (Isoparametric 곡선(曲線) 보요소(要素)를 이용한 평면(平面)뼈대 구조물(構造物)의 대변형(大變形) 및 탄소성(彈塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Shin, Hyun Mock;Lee, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 1993
  • This paper presents a geometrically non-linear and elastoplastic F.E. formulation using a total Lagrangian approach for the two dimensional isoparametric curved beam elements. The beam element is derived by using plane stress elements. The basic element geometry is constructed using the coordinates of the nodes on the element center line and the nodal point normals. The element displacement field is described using two translations of the node on the center line and a rotation about the axes normal to the plane containing the center line of the element. The layered approach is used for the elastoplastic analysis of the plane framed structure with the arbitrary cross section. The iterative load or displacement incremental method for non-linear finite element analysis of the frame structure is used. Numerical examples are presented to demonstrate the behavior and the accuracy of the proposed beam element for geometric and elastoplastic non-linear applications. Comparisons made with present theory and other published data show that tilt' beam element products accurate results with good convergence characteristics.

  • PDF

Analysis of Load Capacity and Deformation Behavior of Suction Pile Installed in Sand (모래지반에 근입된 석션파일의 인발저항력 및 변위거동 분석)

  • Kim, You-Seok;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.27-37
    • /
    • 2011
  • A series of centrifuge model tests to investigate the suction pile pullout loading capacity in sand have been performed. The main parameters that affect the pullout loading capacity of a suction pile include the mooring line inclination angle and the padeye position of the suction pile. With respect to the padeye position, the maximum pullout loading capacity is obtained when the padeye position is near 75% of the pile length from the top. The direction of the pile rotation changes when the padeye position reaches somewhere near 50~75% for all mooring line inclination angles. The translation displacement of suction pile to develop the time of maximum pullout loading capacity decreased as the mooring line inclination angle increased. In addition, the vertical displacements of the center of a suction piles for all cases appeared to develop toward the ground surface.

Characteristics of Curved Track Behaviors according to Traveling Tilting Train (틸팅차량 주행에 따른 기존선 곡선 궤도의 거동 특성)

  • Park, Yong-Gul;Choi, Jung-Youl;Sung, Deok-Yong;Chun, Dae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.692-700
    • /
    • 2007
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. In the area of wayside structure, the stability of track structure and train run shall be evaluated through the review of impact by increased speed by developed train on track structure. The study thus was intended to evaluate the impact on track while a tilting train is running the curve section, which is vulnerable to accelerated train speed. The analysis of tilting train test running the part of Chungbuk line and Honam line was conducted to identify the impact on existing track performance by tilting train. To identify the movement behavior of each part of track while tilting train, high speed train and traditional train (Mugunghwa and freight train) were running the existing line, wheel load, lateral wheel load, rail bending stress, vertical and lateral displacement of rail and vertical displacement of sleeper were compared and analyzed so as to evaluate the expected impact by tilting train for improving the train speed.

Toughening of SiC Whisker Reinforced Al2O3 Composite (SiC 휘스커 강화 Al2O3 복합재료의 고인화)

  • Kim Yon Jig;Song Jun Hee
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.

A Study on the Stress Corrosion Cracking Evaluation for Weld Joint of TMCP steel by SP-SSRT Method (SP-SSRT법에 의한 TMCP강 용접부의 응력부식균열 평가에 관한 연구)

  • 유효선;정희돈;정세희
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • The object of this paper is to evaluate SCC(stress corrosion cracking) susceptibility for parent metal and bond line region of weld joints which have the various weld heat input condtions in TMCP(thermo-mechanical control process) steel by SP-SSRT(small punch-slow strain rate test) method. And the SCC test results of TMCP steel are compared with those of the conventional HT50 steel which has te almost same tensile strength level like TMCP steel. The loading rate used was $3\times10^{-4}$mm/min and the corrosive environment was synthetic sea water. According to the test results, in the case of parent metal, TMCP steel showed higher SCC susceptibility than HT50 steel because of the high plastic strain level of ferrite microstructure obtained by accelerated cooling. And in the case of bond line, the both TMCP steel and HT50 steel showed low load-displacement behaviors and higher SCC susceptibility above 0.6. These results may be caused by theembrittled martensite structure on HT50 steel and by the coarsened grain and the proeutectoid ferrite structure obtained by the impart of accelerated cooling effect on TMCP steel.

  • PDF