• Title/Summary/Keyword: Load Frequency Control

Search Result 795, Processing Time 0.025 seconds

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

Investigation of Low-Frequency Characteristics of Four-Switch Three-Phase Inverter

  • Yuan, Qingwei;Cheng, Chong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1471-1483
    • /
    • 2017
  • The low-frequency characteristics of four-switch three-phase (FSTP) inverter are investigated in this paper. Firstly, a general space vector pulse width modulation (SVPWM) directly involved the neutral point voltage of DC-link is proposed, where no sector identifications and trigonometric function calculations are needed. Subsequently, to suppress the DC offset in the neutral point voltage, the relationship between the neutral point voltage and the ${\beta}-axis$ component of the load current is derived, and then a new neutral point voltage control scheme is proposed where no low pass filter is adopted. Finally, the relationship between the load power factor and the maximum linear modulation index of the FSTP inverter is revealed. Since the operational region for the FSTP inverter in low frequency is reduced by the enlarged amplitude of the neutral point voltage, a linear modulation range enlargement scheme is proposed. A permanent magnet synchronous motor with preset rotary speed serves as the low-frequency load of the FSTP inverter. Experimental results verify that the new neutral point voltage control scheme is effective in the deviation suppression of the neutral point voltage, and the proposed scheme is able to provide a larger linear operational region in low frequency.

Induction Heating Water Heater using Dual Mode Phase Shifted ZVS-PWM High Frequency Resonant Inverter (듀얼 모드 위상 시프트 ZVS PWM 제어 고주파 공진형 인버터를 이용한 IH 온수기)

  • Lee, Sang-Wook;Ryu, Yeoi-Joung;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.82-89
    • /
    • 2018
  • This paper presents a novel prototype of dual mode control based phase shift ZVS PWM high frequency load resonant inverter with lossless snubber capacitors in addition to a single active auxiliary resonant snubber for electromagnetic induction heating(IH) foam metal based consumer fluid dual packs(DPA) heater. The operating principle in steady state and unique features of this voltage source soft switching high frequency inverter circuit topology are described in this paper. The lossless snubber and auxiliary active resonant snubber assisted constant frequency phase shift ZVS PWM high frequency load resonant inverter employing IGBT power modules actually is capable of achieving zero voltage soft commutation over a widely specified power regulation range from full power to low power. The steady state operating performances of this dual mode phase shift PWM series load resonant high frequency inverter are evaluated and discussed on the basis of simulation and experimental results for induction heated foam metal heater which is designed for compact and high efficient moving fluid heating appliance in the consumer pipeline systems.

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1254-1266
    • /
    • 2024
  • This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.

Load Frequency Control Charateristic of 2-Area Power Systems by Optimal PID Controller (최적PID 제어기에 의한 2지역 전력계통 부하주파수 제어특성에 관한 연구)

  • 정형환;이준탁;안병철;김용필;김해재
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.703-710
    • /
    • 1994
  • This paper describes for the applicability of optimal PID controller to the load frequency control of 2-area power systems. The proposed optimal PID controllers are designed by the optimization technique of P.I.D's gain coefficients using the relatively ingeneous simplex method, and we have considered the system sensitivity for the optimal gains and the stable effects of systems to speed regulation changes. This PID controller for load frequency control systems with exciter shows better performances and robustness than conventional tie-line bias controller.

  • PDF

Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance (주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어)

  • Kim, Ki-Bum;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.

A Voltage and Frequency Controller for Stand Alone Pico Hydro Generation

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.267-274
    • /
    • 2009
  • This paper deals with a voltage and frequency (VF) controller for an isolated power generation system based on an asynchronous generator (AG) driven by a pico hydro turbine. The proposed controller is a combination of a static compensator (STATCOM) and an electronic load controller (ELC) for decoupled control of the reactive and active powers of the AG system to control the voltage and frequency respectively. The proposed generating system along with its VF controller is modeled in MATLAB using SIMULINK and PSB (Power System Block Sets) toolboxes. The performance of the controller is verified for the proposed system and feeding various types of consumer load such as linear/non-linear, balanced/unbalanced and dynamic loads.

Microcomputer-Based Constant Frequency Control of Generating System Driven by Hydraulic Power -Pump Displacement Control Type - (마이크로컴퓨터에 의한 유압구동식 발전장치의 정주파수 제어)

  • 정용길;이일영;김상봉;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1991
  • This study suggests a new type shaft generator driven by hydraulic power suitable for small size vessels. Since the shaft generator system is very easy to be affected by disturbances such as speed variation of main engine and load variation of the generator, a robust servo control must be implemented to obtain stable electric power with constant frequency. Thus, in this study two types of controller design method-the reference following optimal control method and robust servo control method-are adopted to the controller design. In the experiment, static and dynamic characteristics of the shaft generator system according to the variation of input frequency setting, the speed variation of the pump and the load variation of the generator are investigated. From the considerations on the computer simulation results and experimental results, it is ascertained that the shaft generator system proposed in this study has good control performances.

  • PDF

Development of Control Algorithm and Detection of the Small Leakage Current (미소 누전전류 검출 및 차단제어기 설계)

  • 반기종;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.161-165
    • /
    • 2004
  • In this paper, we have designed the ground faults detection and interrupting controller at normal condition of AC 120v to 240v rating voltage. Ground faults in electrical network have the characteristics of low current, 60㎐ frequency to 2㎑frequency. The load condition are no load and 20A load. The trip level of the controller is 6㎃ with ground faults. The Controller algorithm is implemented using pic16c71 microprocessor.