• Title/Summary/Keyword: Load Following Operation

Search Result 102, Processing Time 0.028 seconds

A study on determining the minimum vertical spring stiffness of track pad considering running safety. (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-ll;Yang SinChu;Kim Yun-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.842-847
    • /
    • 2004
  • This study presents the minimum spring stiffness of resilient track pad considering the safety of running train. A nonlinear static 3-D finite element is used for the modeling of railway superstructure, especially for the reflection of nonlinear resistance of rail fastening system. Moreover, ballast is considered as an elastic foundation. As the input load, eccentric wheel and lateral force are used and they are derived from ' Lateral-force/Wheel-load Estimation Equations '. Analysis results are compared with following two values : allowable lateral displacement of rail head (derived from the geometrical derailment evaluation of wheel/rail) and operation standard value (derived from the field test results of track).

  • PDF

THE SPEED CONTROL OF DC SERIER WOUND MOTOR USING DSP (TMS320F240)

  • Bae, Jong-Il;Je, Chang-Woo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.371-376
    • /
    • 2003
  • In general, the electronic forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by speed control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the electronic forklift is demanded the robust drive mode. Some cases of the mode, there are trouble in torque and speed control following slope capacity. The control is sensitive concerning with slope angle and output speed, various control method is studied for stability of speed control. We apply speed controller for the self-tuning using DSP(TMS320F240) as main controller for high speed processor, embody dynamic characteristic of control compared the PI control to the fuzzy control.

  • PDF

Current Control of the Forklift using a Fuzzy Controller

  • Bae, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2552-2556
    • /
    • 2005
  • In general, the forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by current control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the forklift is demanded the robust drive mode. Some cases of the mode, there aretrouble in torque control following slope capacity. The control is sensitive concerning about slope angle and output speed, various control method is studied for stability of speed control. In this paper, I apply current control for the self-tuning using the fuzzy controller to obtain robust, stable speed control and use stable, high efficiency control using DSP as main controller for high speed processor, embody dynamic characteristic of control compared the PI controller to the fuzzy controller.

  • PDF

A Study on The Resonant Frequency Following Control of Resonant Inverters (공진형 인버터의 공진 주파수 추종 제어에 관한 연구)

  • Kim, Nam-Jeung;Yo, Wan-Sik;Cho, Kyu-Min;In, Chi-Gak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1177-1181
    • /
    • 2000
  • Usually, in many applications. high frequency resonant inverters are used, and the PAM(Pulse Amplitude Modulation), PFM(Pulse Frequency Modulation) or PWM(Pulse Width Modulation) techniques are used to control the output power of resonant inverters. And the resonant inverters have to control the output frequency for the reliable operation under the variable load conditions. In this paper, a new switching scheme is proposed as a resonant frequency following control of resonant inverters. With the proposed method. it can be obtained that optimum resonant frequency and unity output displacement factor under the variable resonant frequency adaptively. The detail algorithm of the proposed switching scheme and its characteristics are discussed. And the veridity of the proposed method is confirmed with the experimental results.

  • PDF

A Study on the Operation of the Class E High-Efficiency Tuned Power Amplifier (E급고효율동조전력증폭기의 동작특성에 관한 연구)

  • 김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.3
    • /
    • pp.132-139
    • /
    • 1984
  • This paper presents an exant analysis of the class E tuned power amplifier with a shunt inductor. The following performance parameters are determined for optimum operation with any switch duty ratio: the collector current and voltage waveforms, the peak values of collector current and voltage, the output power, the power output capability, and the values of the load network elements. The analysis shows that the maximum power output capability occurs at a duty ratio of 50 percent. The measured collector efficiency of experiments is 93 percent with 0.93W at 1MHz. This amplifier is especially applicable at portable transmitters because its colletor efficiency is extremely high.

  • PDF

A case Study for Protection Relay System of small Cogeneration intertie (단순병렬 자가발전 설비 보호방식 검토 사례)

  • Lee, S.J.;Kim, K.S.;Yoon, K.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.234-236
    • /
    • 2002
  • The Co-Gen System which maximize energy efficiency was installed at the industrial plants at the initial stage. However Small Scale Co-Gen System was expanded even to the general end-users such as housing and building owing to ESCO business recently. For this SSC, inter-connected operation to the utility is desirable due to voltage and frequency fluctuation following to unbalance between power output and load. Then voltage unbalance with utility system, frequency, increase of short circuit capacity, reclosing, and ALTS etc. should be fully considered for the inter-connected operation. Voltage variation, protection coordination, Co-Generators single running, and short circuit capacity should also be solved. To research the method and solve the problems through the field test and application, we study individual customers Co-Gen System as a case study.

  • PDF

Flexible operation and maintenance optimization of aging cyber-physical energy systems by deep reinforcement learning

  • Zhaojun Hao;Francesco Di Maio;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1472-1479
    • /
    • 2024
  • Cyber-Physical Energy Systems (CPESs) integrate cyber and hardware components to ensure a reliable and safe physical power production and supply. Renewable Energy Sources (RESs) add uncertainty to energy demand that can be dealt with flexible operation (e.g., load-following) of CPES; at the same time, scenarios that could result in severe consequences due to both component stochastic failures and aging of the cyber system of CPES (commonly overlooked) must be accounted for Operation & Maintenance (O&M) planning. In this paper, we make use of Deep Reinforcement Learning (DRL) to search for the optimal O&M strategy that, not only considers the actual system hardware components health conditions and their Remaining Useful Life (RUL), but also the possible accident scenarios caused by the failures and the aging of the hardware and the cyber components, respectively. The novelty of the work lies in embedding the cyber aging model into the CPES model of production planning and failure process; this model is used to help the RL agent, trained with Proximal Policy Optimization (PPO) and Imitation Learning (IL), finding the proper rejuvenation timing for the cyber system accounting for the uncertainty of the cyber system aging process. An application is provided, with regards to the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED).

Analysis of Power Pattern According to Load Types (부하 형태에 따른 전력패턴 분석)

  • Mi-Yong Hwang;Seung-Joon Cho;Soon-Hyung Lee;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.369-375
    • /
    • 2023
  • In this paper, we compared and analyzed the power load patterns of dormitory buildings and office buildings to use them as basic data (demand analysis and capacity design) for the design and operation of microgrids for multi-use facilities, and the following conclusions were got. During the daytime on regular weekdays, the power consumption load pattern of office buildings was relatively large at 264.0~332.3 kWh, and during the evening hours, the power consumption load pattern of dormitory buildings was relatively large at 233.0~258.3 kWh. In the case of vacation, during the daytime on weekdays, the power consumption load pattern of office buildings was relatively large at 279.1~407.4 kWh, and in the evening, the power consumption load pattern of dormitory buildings was relatively high at 280.1~394.1 kWh. During the daytime on regular weekends, the power consumption of dormitory-type buildings was relatively high at 133.5~201.6 kWh, and it was found that the power consumption of dormitory-type buildings appeared relatively high at 187.5~252.1 kWh. During a vacation in the daytime on weekends, the power consumption of dormitory-type buildings was found to be 186.5 kWh~ and 218.6 kWh. The increase in power consumption during a vacation (December-February) compared to normal (April-June) was thought to be due to an increase in electricity demand, and the reason for the higher power consumption in dormitory buildings during the vacation was due to reduced working hours in office buildings.

Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.220-229
    • /
    • 2002
  • In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely; surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to achieve loss minimization at difffrent speeds and load torque values. Data for training the NNC are obtained through off-line simulations of SPMSM and IPMSM at difffrent operating conditions. Accuracy and fast response of each NNC is proved by applying sudden changes in speed and load and tracking the UC output. The drives'efHciency obtained by flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying the angle of advance "$\vartheta$" of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at diffErent values of $\vartheta$, derived to be function of speed and load torque. A NN is also designed, and trained to vary $\vartheta$ following the derived control law. The accuracy and fast response of the NN controller is also proved.so proved.

Analysis of Office Building HVAC System Drawings (사무용 건축물 공조설비 설계도서 분석)

  • Park, Jong-Il;Kim, Se-Hwan;Kim, Dong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.776-781
    • /
    • 2007
  • Optimized capacity of equipments are essential for energy saving and low cost construction and operation. So we must use proper design data for HVAC system design. We investigated for architectural data, equipment capacity, cooling and heating load design criteria of 52 office buildings. Following research results were obtained by carrying out each task. Office building effective area rate is 63%. The average building cooling load of South Korea is $140W/m^2$ and average heating loads in Seoul and Pusan area are $120{\sim}130W/m^2$ and $70{\sim}80W/m^2$. We also analysised HVAC design criteria. Person ratio in effective building area is $0.2person/m^2$, sensitive and latent heat loads of a person are 60W and 65W, light and equipment loads of office buildings are $25W/m^2$ and $20W/m^2$.