• Title/Summary/Keyword: Load Following Operation

Search Result 102, Processing Time 0.029 seconds

A BIFUNCTIONAL UTILITY CONNECTED PHOTOVOLTAIC SYSTEM WITH POWER FACTOR CORRECTION AND U.P.S. FACILITY

  • Kim. S.;Yoo, Gwonjong;Song, Jinsoo
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.103-108
    • /
    • 1996
  • In this paper, a novel utility connected photovoltaic power generation system with unity power factor and uninterruptable power system facility and its control strategy are proposed. The proposed photovoltaic(PV) system is connected in parallel between utility and load. The PV system provides an uninterruptable voltage to load, a maximum power tracking to solar array, and power factor correction to the utility. The proposed system has the following advantages compared with the conventional utility connected PV system. 1. Harmonic elimination Function 2. Feeding the photovoltaic energy to the utility 3. Providing the uninterruptible power source along battery to the load In case that the photovoltaic array system is on the poor power generation, the battery and capacitor of the PV system are charged by three phase utility source and the inverter in the PV system only provides the reactive current to eliminate the harmonic current exited on the utility. In the normal operation mode, the PV system supplies active power to load and reactive power to utility in order to maintain the unity power factor and to regulate ac load voltage.

  • PDF

Study on Load Following Characteristics of Generators during Start-up of Induction Motor Load in Isolated System (독립계통에서 유도전동기 부하의 기동시 발전기의 안정적 부하추종에 관한 연구)

  • Shin, Ho-Jeon;Huh, Jae-Sun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.80-85
    • /
    • 2015
  • Recently, not only in the Middle East and Southeast Asia but in African area, too, industrial plant construction is being actually done. But unlike in Korea, a lot of them are small-scale isolated industrial plants. And because of the characteristics of industrial plants, induction motors' load forms a large part. The influence of stability resulted from the maneuver and operation of induction motors' load may lead to serious result in the isolated system. This study analyzed it through mathematical modeling on induction motors' maneuver phenomena in the isolated system, realized a case system with the E-TAP program, and simulated load follow performances according to the control variables of a generator inside the isolated system.

Dyamic Modeling and Analysis of Air Supply System for Vehicular PEM Fuel Cell (고분자 전해질형 연료전지 자동차의 급기 시스템의 동적 모델링 및 분석)

  • Jang, HyunTak
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 2004
  • In this paper, we developed the dynamic model of a fuel cell system suitable for controller design and system operation. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the intake manifold filling dynamics, oxygen partial pressures and membrane humidity on the fuel cell voltage. In the simulations, we paid attention to the transient behavior of stack voltage and compressor pressure, stoichiometric ratio. Simulation results are presented to demonstrate the model capability. For load current following, stack voltage dynamic characteristics are plotted to understand the Electro-chemistry involved with the fuel cell system. Compressor pressure and stoichiometric ratio are strongly coupled, and independent parameters may interfere with each other, dynamic response, undershoot and overshoot.

Vector Control System for Induction Motor using ANFIS Controller (ANFIS Controller틀 이용한 유도전동기 벡터제어 시스템)

  • Lee, Hak-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1051-1052
    • /
    • 2006
  • This paper deals with mathmatical of an induction motor, considering non-linearity in the torque balance equation under closed loop operation with a reference speed. A controller based on Adaptive Nuro-Fuzzy Inference System (ANFIS) is developed to minimize overshoot and settling time following sudden changes in load torque. The overall system is modeled and simulated using the Matlab/simulink and Fuzzy Logic Toolbox. The advantages of fuzzy logic and neural network based fuzzy logic controller. Required training data the ANFIS controller is generated by simulation of the anti-windup PI controller is eliminated using the ANFIS controller. The transient deviation of the response from the set reference following variation in load torque is found to be negligibly samll along with a desirable reduction in settling time for the ANFIS controller.

  • PDF

A study on capacitive transformer (용량성배전변압기에 관한 연구)

  • Sung Won Rhee
    • 전기의세계
    • /
    • v.18 no.2
    • /
    • pp.7-14
    • /
    • 1969
  • From the first customer located right at the substation to the last customer at the end of the line, voltage must be held within close limits, so the voltage regulation is more important than the thermal limit. On a typical distribution system during the peak load period, the voltage drop may be serious enough to cause unsatisfactory operation of home appliances in the residential area, and present many problems to manufacturing industries, where the voltage must be maintained within close limits to insure smooth operation. Among all the factors contributing to voltage drop in the distribution system, the voltage drop in the distribution transformer may account for 30% of this figure. If we can eliminate this factor, the power companies can provide better quality electricity to more customers with the existing distribution facilities, thus saving on initial investment costs. Taking all these problems into consideration, the author undertook the design of a capacitive transformer which would give zero voltage drop at rated load and at 80% lagging power factor while incorporating overload features to withstand 400% overload for at least 100 seconds. The following are the results obtained through design, manufacture and test of an initial experimental transformer built with these specific purposes.

  • PDF

Analysis of Power Supplying Characteristic Following Load Pattern Using EMTDC and Proposal for Optimal Operation (EMTOC를 이용한 전기철도에서의 차량부하 패턴에 따른 전력공급 특성 해석 및 최적운전방안 제안)

  • Lee Han Sang;Lee Chang Mu;Lee Han Min;Jang Gil Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.248-250
    • /
    • 2004
  • Following the needs for increment of public transportation system electric railroad system should be expended. There are several solutions to expend. One of these solutions is to reduce the interval between two railroad vehicles. However, it cannot be reduced too much because reduction of interval means increment of loads and induces supplying voltage decrement. In this paper, voltage variation according to railroad intervals is simulated and optimal operation in railroad system is proposed.

  • PDF

Development of a Depth and Working Load Control System for Tractor Using a Proportional Valve (비례밸브를 이용한 트랙터 경심 및 부하제어시스템 개발)

  • Lee, S.S.;Lee, J.Y.;Mun, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.16-23
    • /
    • 2006
  • Depth and working load control is one of the most important technique in control system for tractor rotary implement automation. Keeping the depth consistent is critical to bring along crops and to improve the efficiency and quality of the following operations. Keeping the load of engine consistent is an essential factor for the efficiency of operation and engine protection of tractor. In this study we investigated the possibility of application of depth and working load control system for tractor using a proportional valve through field tests. Depth control was implemented by the ascent and descent of 3 point linkage for the change of setting depth. There were 4 mm and 5.2 mm control deviations for setting depths of 50mm and 100mm, respectively. Load control was operated appropriately by the ascent and of descent of 3 point link for the change of setting working load. The standard deviations between setting load and engine load were 171 rpm at 1.3 km/h and 164 rpm at 2.3 km/h tractor travel velocity. The results of experiment showed that the characteristics of response was sufficient to be used as the implement depth and working load control system for tractor using proportional valve.

Optimization for Xenon Oscillation in Load Following Operation of PWR (가압경수형 원자로 부하추종 운전시 제논진동 최적화)

  • 김건중;오성헌;박인용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.861-869
    • /
    • 1989
  • The optimization problems, based on Pontryagin's Maximum Principle, for minimizing (damping) Xenon spatial oscillations in Load Following operations of Pressurized Water Reactor (PWR) is presented. The optimization model is formulated as an optimal tracking problem with quadratic objective functional. The oen-group diffusion equations and Xe-I dynamic equations are defined as equality constraints. By applying the maximum principle, the original problem is decomposed into a single time problem with no constraints. The resultant subproblems are optimized by using the conjugate Gradient Method. The computational results show that the Xenon spatial oscillation is minimized, and the reactor follows the load demand of the electrical power systems while maintaining the desired power distribution.

A study for the system voltage and reactive power control (계통전압.무효전력 제어에 관한 연구)

  • 송길영
    • 전기의세계
    • /
    • v.14 no.3
    • /
    • pp.10-17
    • /
    • 1965
  • This paper presents a method of the voltage-reactive power control in the long and short range operations and introduces a conception, "optimum control pattern." The optimum control pattern, aiming at the over-all system control, is defined as the optimum voltage distribution which minimizes the system operating cost under the conditions that the specified power be supplied and the system voltage be kept within the specified bounds. The following procedure was adopted to obtain this optimum pattern. In the first place, a power system was divided into three blocks, namely, load, substation and generator. Lagrange's, multiplier method is applied to each block in turn, paying attention only at the operating voltage distribution. Phase angles at each bus are then modified so that the continuity of active power is maintained. This procedure may be called "block relaxation method with Lagrange's multipliers." In a long range operation, this control pattern determines the optimum installation capacity of reactive power sources. In a short range operation, it also gives the reference state of real time control and the optimum switching capacity of reactive power souces. The real time control problem is also studied from the standpoint of cooperation of control devices such as generators, shunt capacitors, shunt reactors and ratio load controllers. A proposal for the real time control will contribute to the automation of power system operation in the near future. in the near future.

  • PDF

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.