• Title/Summary/Keyword: Load Flow Analysis

Search Result 876, Processing Time 0.023 seconds

A Study on the Efficiency of a Load Sensing Main Control Valve Using SimulationX (SimulationX를 이용한 부하 감지형 메인 컨트롤밸브의 효율에 관한 연구)

  • Kim, Dong Myoung;Lee, Jung Min;Jung, Won Jee;Jang, Joo Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 2016
  • In this study, we develop a model of an open center and load-sensing system and for a main control valve to analyze system characteristics and efficiency using SimulationX. In order to analyze the operating characteristics of the pressure and flow of the main control valve of an open center system, a test was performed at each port. The reliability of the model was confirmed by comparing the similarity of the analysis results with the test results before analyzing the operating characteristics of the system. Development of the load sensing main control valve was performed by adding a flow sharing valve and a notched shape to the open center system based on it's the proven reliability. The authors performed the simulation under the same load conditions in order to compare the efficiency of the systems. Additionally, the combined operation performance was investigated by means of analyzing the characteristics of flow distribution under different load conditions.

The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator (직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

A Study on the Discharged Characteristics of the Pollutants using the Empirical Equation and Factor Analysis - Case Study of the Upper and Lower Watershed of South Han River (경험식과 요인분석을 통한 오염물질 유출 특성 연구 - 남한강 상·하류 수계 주요 하천을 중심으로)

  • Park, Ji Hyoung;Sohn, Su Min;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.905-913
    • /
    • 2011
  • This study was conducted to characterize the discharge feature of pollutant load from the upper and lower watershed influencing on the water quality of South Han River using the empirical equation and Factor Analysis. The results of regression analysis between flow rate and pollutant load were as follows. In the streams of the upper watershed of South Han river, $BOD_5$ and $COD_{Mn}$ were increased as the flow rate was increased. Also, steep increases in SS and TP were observed with positive correlation with the flow rate while change in TN was slightly shown. On the other hand, in the streams of the lower watershed of South Han river, $BOD_5$ was negatively correlated with the flow rate, being decreased with the increase in the flow rate. However, changes in $COD_{Mn}$, TN, SS, and TP showed a similar trend with those observed in the upper watershed. With Factor Analysis of the water quality and various components, it was appeared that the flow rate, SS, and TP were significantly correlated each other and they were indicated as the principal component influencing on water quality in the streams of the upper watershed. In contrast, $BOD_5$, $COD_{Mn}$ and TOC were significantly correlated each other and they were included as the principal pollution component of the streams in the lower watershed. From these results, it was conclusive that the upper watershed of South Han River was mainly affected by non point source pollutants while the lower watershed was influenced by point source pollutants from the developed areas.

Comparison of Load Ratio of Load-cell type Anemometer with Windswept Shape Variation (수풍부 형상에 따른 로드 셀형 풍향풍속계의 하중 비 비교)

  • Kim, Tae-Hyeong;Han, Dong-Seop
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.839-844
    • /
    • 2012
  • Anemometer is a meteorological instrument that measures wind direction and wind speed in real time, and is mounted to the cranes that are used at ports, shipbuilding yards, off-shore structure, or construction sites that are influenced by wind, and it is used in conjunction with the safety system. Load cell-type anemometer measures the wind direction through the ratio of load between 4 positions by mounting the thin plate to 4 load cells, and measures wind velocity through the summation of loads. According to previous research, the load ratio between two adjacent windswept with respect to the wind direction has unstable value due to vortex around windswept. This causes the result that increases an error on the wind direction. In this study we compared and analyzed the difference between the load ratio with respect to three type windswept shapes in order to suggest the proper windswept shape to reduce this error. The computational fluid flow analysis is carried out with ANSYS CFX to analyze the load ratio between three windswept shapes. Wind direction was adopted as the design variable, and selected 9 wind direction conditions from $0^{\circ}{\sim}90^{\circ}$ with $11.25^{\circ}$ interval for computational fluid flow analysis.

A Study on the Operating-Mode Characteristics of Two-Module Thyristor Controlled Series Compensator (Two-Module TCSC의 운전모드 특성 연구)

  • Jeong, Gyo-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1410-1416
    • /
    • 1999
  • This paper aims at investigating the operating-mode characteristics of two-module Thyristor Controlled Series Compensator (TCSC) as an equivalent of the multi-module TCSC in a simple three-phase power transmission system. The load flow program is developed to analyze the steady-state characteristics of two-module TCSC system and to find the thyristor firing angles for the required real power flow. The stability calculation program is developed with Poincare mapping theory. Simulation studies of the TCSC power transmission system using EMTP are performed to evaluate the transient characteristics of two-module TCSC as a real power flow controller and to rpove the results of the load flow calculation and the stability analysis. In the process of the study, the operating-mode characteristics of two-module TCSC are evaluated and compared to those of single-module TCSC.

  • PDF

Assessment of Pollution Levels in the Jangsungcheon Watershed Using Load Duration Curves and Analysis of the Causes

  • Cho, Sohyun;Bak, Jonghun;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang Young
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.873-885
    • /
    • 2019
  • In this study, a load duration curve was applied to the Jangseongcheon, one of the tributaries of the Yeongsan River, to assess whether the target water quality was achieved. In addition, pollution of the water body was investigated to develop and suggest the optimal management time with respect to polluted flow sections and monthly conditions. The average flow rates of sections JS1 and JS2 were $0.25m^3/s$ and $1.08m^3/s$, respectively. The BOD and T-P for water-quality standards at JS1 were rated at II, whereas the COD and TOC were rated at III, thus indicating a fair level of water quality. By contrast, the BOD at JS2 was rated at III, the T-P at IV, and the TOC at V, indicating poor water quality in this section. The load duration curve was plotted using the actual flow data measured in eight-day intervals for eight years from 2011 to 2018 at locations JS1 and JS2 in the Jangsungcheon Basin. In an assessment using the load duration curve on whether the target water quality was met at location JS1, all of the water quality parameters (BOD, COD, TOC, T-N, T-P, and SS) satisfied the target water quality. By contrast, at location JS2, parameters COD, TOC, T-N, and T-P exceeded target values by more than 50%, indicating the target water quality was not met. The discharge loads of locations JS1 and JS2 were analyzed to identify the reasons the target water quality was exceeded. Results revealed that the land system contributed considerably. Furthermore, the discharge load of JS2 accounted for more than 80% of the load on the entire basin, excluding that of JS1. Therefore, the best method for restraining the inflow of pollutants into the stream near location JS2 must be applied to manage the water quality of the Jangsungcheon.

Numerical Analysis on the Characteristics of Supersonic Steam Jet Impingement Load (초음속 증기제트의 충돌하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • Structures, systems and components of nuclear power plants should be able to maintain safety even in the event of design-basis accidents such as high-energy line breaks. The high-pressure steam jet ejected from the broken pipe may cause damage to the adjacent structures. The ANSI/ANS 58.2 code has been adopted as a technical standard for evaluating the jet impingement load. Recently, the U.S. NRC pointed out the non-conservativeness of the ANSI/ANS 58.2, because it does not take into account the blast wave effect, dynamic behavior of the jet, and oversimplifies the shape and load characteristics of the supersonic steam jet. Therefore, it is necessary to improve the evaluation method for the high-energy line break accident. In order to evaluate the behavior of supersonic steam jet, an appropriate numerical analysis technique considering compressible flow effect is needed. In this study, numerical analysis methodology for evaluating supersonic jet impingement load was developed and verified. In addition, the conservativeness of the ANSI/ANS 58.2 model was investigated using the numerical analysis methodology. It is estimated that the ANSI jet model does not sufficiently reflect the physical behavior of under-expanded supersonic steam jet and evaluates the jet impingement load lower than CFD analysis result at certain positions.

Spatio-temporal Load Analysis Model for Power Facilities using Meter Reading Data (검침데이터를 이용한 전력설비 시공간 부하분석모델)

  • Shin, Jin-Ho;Kim, Young-Il;Yi, Bong-Jae;Yang, Il-Kwon;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1910-1915
    • /
    • 2008
  • The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).

Numerical investigation of the unsteady flow of a hybrid CRP pod propulsion system at behind-hull condition

  • Zhang, Yuxin;Cheng, Xuankai;Feng, Liang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.918-927
    • /
    • 2020
  • Flows induced by hybrid CRP pod propulsion systems (CRP-POD) are fundamentally characterized by unsteadiness. This work presents a numerical study on the unsteady flow of a CRP-POD at behind-hull condition based on CFD (Computational Fluid Dynamics). Unsteady RANS method is adopted, coupled with SST k-u turbulence model and sliding mesh method. The propeller thrusts and torques obtained by CFD is validated by model tests and acceptable agreements are obtained. The time histories of shingle-blade loads and pressures near the hull surface are recorded for the analysis of unsteady flow features. The cases of forward propeller alone and aft propeller alone are also computed to distinguish the hull-propeller interaction and propeller-propeller interaction. The results show the blade loads of both forward and aft propellers strongly fluctuate with phase angles. For the forward propeller, the blade load fluctuation is mainly governed by the hull-propeller interaction, while the aft blade load is remarkably affected by the propeller-propeller interaction in terms of the load average and fluctuation pattern. The fields of pressure, vorticity and velocity are also analyzed to reveal the unsteady flow features.

Safety Evaluation of Net-type Debris Flow Protection System Using Numerical Analysis (수치해석을 이용한 네트형 토석류 방호시스템의 안전성 평가)

  • Lee, Eung-Beom;Lim, Hyun-Taek;Whang, Dae-Won;Lim, Chang-Su;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.157-168
    • /
    • 2018
  • Recently, the occurrence of typhoons and heavy rainfall is increasing due to climate change. This causes increase in possibility of landslide damages in rural areas. However, in reality, the precise engineering stability assessment studies are still insufficient. Therefore, in order to reduce the landslide damages and effectively manage mountainous areas, the development of disaster prevention techniques is needed. In this study, to analyze the shock absorbing effect of the buffer-spring during application of dynamic impact load in the debris flow protection system, numerical analysis is carried out for each free field of the buffer-spring and the load sharing ratio of the buffer-spring is also examined. In addition, the field applicability is verified by comparison of the tensile strength of the conventional buffer-spring and the wedge type buffer-spring on various magnitudes of dynamic impact load. As a result of the study, it is found that the net-type debris protection system is effective to mitigate loss of properties and human lifes during landslide.