• 제목/요약/키워드: Load Distribution Ratio

검색결과 392건 처리시간 0.026초

편심압축하중을 받는 사각튜브의 최대압괴하중 (Maximum Crippling Load in Eccentrically Compressed rectangular Tubes)

  • 김천욱;한병기;정창현;김지홍
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.180-189
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Local buckling stress and maximum crippling load are investigated. A thin-walled tube under load is controlled by local buckling or yielding of material according to the ratio of thickness to width (t/b) of the cross section, and subsequent collapse of the section. The relationship can be divided into three regions : elastic , post-buckling and crippling . the load-displacement relationship is theoretically presented in each region by introducing the stress distribution of the cross section in the loading process. And the maximum load carrying capacity is derived in the closed form as a function of normal stress on the flange and web.

  • PDF

22.9kV 배전선로 전력손실산출 기법에 관한 연구 (A Study on Calculation Method of Power Losses in 22.9kV Power Distribution Lines)

  • 황인성;홍순일;문종필
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.219-223
    • /
    • 2017
  • In this paper, we calculated the losses in the high voltage lines of power distribution system. The losses caused by high voltage lines are calculated using maximum current, resistance, loss factor, and dispersion loss factor. The accurate extraction of these factors are very important to calculate the losses exactly. Thus, the maximum loads are subdivided to regions and calculated monthly for more accurate maximum current calculation. Also, the composite resistance is calculated according to the ratio of the used wire types. In order to calculate the loss factor, the load factors according to the characteristics of each region were calculated. Finally, the losses of the distribution system is calculated by adding the losses by the transformers and the low voltage lines.

사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(I) - 재하시험 자료 분석을 통한 전체지지력에 대한 주면마찰력의 분담율(SRF) 분석 - (Study(I) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - An Analysis of Sharing Ratio of Skin Friction to Total Bearing Capacity (SRF) by Analyzing Pile Load Test Data -)

  • 최용규;이원제;이창욱;권오균
    • 한국지반공학회논문집
    • /
    • 제35권8호
    • /
    • pp.17-30
    • /
    • 2019
  • 실제 시공된 말뚝들의 재하시험 자료 및 매입 PHC말뚝의 설계 자료로부터 전체지지력에 대한 주면마찰력의 분담율인 SRF를 분석하였다. 현장에서 시험 시공된 말뚝의 SRF는 말뚝의 종류, 상대근입길이, 지반의 종류, 재하시험의 종류에 상관없이 42~99%이었다. 매입 PHC말뚝에 대한 설계 자료에서 구한 SRF는 말뚝의 직경, 상대근입길이에 상관없이 풍화암에 소켓된 경우 20~53%의 범위에 분포하였다. 사용말뚝으로 실제 시공된 매입 PHC말뚝에서 재항타 동재하시험 자료로부터 구한 SRF는 말뚝의 직경, 상대근입길이, 지반의 종류에 상관없이 4~83%의 범위에 분산되어 분포하였다. 사용말뚝에서 SRF가 낮은 수준으로 나타나는 이유는 매입 PHC말뚝의 주면고정액의 충전이 제대로 이루어지지 않은 채 시공된 현황으로 볼 수 있었으며 따라서 주면고정액의 시공관리에서 시급하게 개선해야 할 현황이었다. 풍화암에 소켓된 매입 PHC말뚝의 설계에서 사용하고 있는 극한지지력 산정공식으로 계산한 주면마찰력의 SRF는 실제 현장 시공 말뚝의 SRF보다 평균적으로 2.2배 정도로 낮은 수준으로 평가되었다. 이는 설계에서 사용하고 있는 산정공식에 의한 극한주면마찰력이 매우 낮은 수준으로 계산되기 때문이다. 따라서 SRF를 만족시킬 수 있는 새로운 주면마찰력 산정공식의 제안 필요성이 있는 것으로 판단된다.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

EFFECT OF MISALIGNMENT ON THE STATIC CHARACTERISTICS OF 3-LOBE proceeding BEARING

  • Strzelecki, S.;Radulski, W.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.95-96
    • /
    • 2002
  • The operation of proceeding bearing in the conditions of misaligned axis of proceeding and bush leads to the load concentration on the bearing edges causing further mixed lubrication conditions, unstable operation and intensive wear of mating parts. For the design process of proceeding bearing the knowledge of static characteristics determined from the oil film pressure and temperature distribution is very important. For the 3-lobe proceeding bearing, the pressure, temperature and viscosity fields, load capacity, minimum oil film thickness, power loss, oil flow and maximum oil film temperature have been determined by iterative solution of the Reynolds', energy and viscosity equations. The paper introduces the results of theoretical investigations of static characteristics of 3-lobe proceeding bearing operating at misaligned axis of proceeding and bush. An effect of misalignment ratio, length to diameter ratio of the proceeding bearing, the lobe clearance ratio on the static characteristics was investigated. Laminar, adiabatic model of oil film for the solution of Reynolds, energy and viscosity equations was applied.

  • PDF

등급 양방향 진화적 구조 최적화 기법을 이용한 구형 압력용기 노즐부의 형상최적화 (Shape Optimization on the Nozzle of a Spherical Pressure Vessel Using the Ranked Bidirectional Evolutionary Structural Optimization)

  • 이영신;류충현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.752-757
    • /
    • 2001
  • To reduce stress concentration around the intersection between a spherical pressure vessel and a cylindrical nozzle under various load conditions using less material, the optimization for the distribution of reinforcement has researched. The ranked bidirectional evolutionary structural optimization(R-BESO) method is developed recently, which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO. In this paper, the optimized intersection shape is sought using R-BESO method for a flush and a protruding nozzle. The considered load cases are a radial compression, torque and shear force.

  • PDF

2축하중을 받는 직교이방성 경사균열에서 임계응력의 예측 (Prediction of the Critical Stress for the Inclined Crack in Orthotropic Materials under Biaxial load)

  • 임원균;조형석;정우길;이일수
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1384-1391
    • /
    • 2006
  • The problem of an infinite anisotropic material with a crack inclined with respect to the principal material axes is analyzed. The material is subjected to uniform biaxial load along its boundary. It is assumed that the material is homogeneous, but anisotropic. By considering the effect of the horizontal load, the distribution of stresses at the crack tip is analyzed. The problem of predicting critical stress in anisotropic solids which is a subject of considerable practical importance is examined and the effect of load biaxiality is made explicitly. The present results based on the normal stress ratio theory show significant effects of biaxial load, crack inclination angle and fiber orientation on the critical stress. The analysis is performed for a wide range of the crack angles and biaxial loads.

전단응력하의 분산형 복합재료에 미시역학적인 특성평가 (Analysis for Properties of Particle or Short Fiber Reinforced Composites based on Micromechanics under Pure Shear)

  • 조영태;임광희
    • Composites Research
    • /
    • 제15권3호
    • /
    • pp.11-17
    • /
    • 2002
  • 본 연구에서는 분산형 강화복합재료에 균열이 발생하면 하중부하능력이 감소와 더불어 재료의 손상을 초래할 수 있어 재료의 완전한 게재물과 균열이 존재한 게재물이 있는 경우를 상정하여 하중부하능력과 탄성 음력분포를 평가한다. 무한체가 전단음력을 받을 때 완전한 게재물과 균열이 내재한 경우에 대하여 3차원 유한요소해석이 수행되어 완전한 게재물의 경우는 게재물의 영역의 음력은 동일하고 게재물의 계면은 다소 불균일하게 나타났다. 그리고 균열이 내재한 경우에는 균열주변에는 음력이 집중되는 경우를 볼수 있을 뿐만아니라 아주 복잡한 분포를 볼수 있었다. 불균질물의 평균응력은 하중부하능력으로 표현이 가능하였고 완전만 게재물과 균열의 경우도 균열손상에 의해 하중부하능력의 차이를 볼 수 있었다. 특히, 균열이 내재한 경우에 에스펙터비(aspect ratio)가 증가할수록 하중부하능력이 증가함을 알 수 있었다.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

Measurement and Analysis of Physical Environmental Load during Handling and Distribution of Domestic Fruits -Focused on Seongju Korean Melon

  • Jongmin Park;Donghyun Kim;Wontae Seo;Hyunmo Jung
    • 한국포장학회지
    • /
    • 제29권2호
    • /
    • pp.129-138
    • /
    • 2023
  • The proportion of agricultural products handled through the Agricultural Products Processing Center (APC) is also steadily increasing every year, and in the case of Seongju Korean melon, a total of 10 APCs of Nonghyup and farming association corporations are in operation, and the distribution ratio is about 60% based on total production. In this study, Seongju Korean melon was selected as a target to analyze the environment load during carrying (production farm ~ APC) in the production area and the transport environment load during distribution of domestic fruits, and to analyze the environmental load for handling at APC. The vertical average vibration intensity (overall Grms of 1~250 Hz) of truck transport measured at three transport routes from Seongju Korean melon producer ~ APC, Seongju ~ Seoul and Seongju ~ Jeju was about three times larger than that in the lateral direction and 4.5 times larger than that in the longitudinal direction, respectively. The frequency of occurrence of high-amplitude events (G) in the vertical direction compared to the measuring time was deeply related to pavement conditions in the order of unpaved farm-roads, concretepaved farm-roads, and asphalt-paved main-roads, but overall Grms for the entire frequency band is believed to have a greater impact on vehicle traveling speed than road conditions. On the other hand, the difference in the size and direction of the vibration intensity measured by the forklift truck's main-body and the attachment (fork carrier) during handling at Seongju Korean melon APC was clear, and the vibration intensity of the forklift truck's main-body was largely affected by the stiffness of the fork and the mast according to the handling weight. Based on the field-data of the transport environment during domestic distribution measured through this study, it is believed that it is possible to develop a lab-based simulation protocol for appropriate packaging design.