• Title/Summary/Keyword: Load Applied Angle

Search Result 358, Processing Time 0.027 seconds

Wear Simulation of Engine Bearings in the Beginning of Firing Start-up cycle (파이어링 시동 사이클 초기에서의 엔진 베어링 마모 시뮬레이션)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.244-266
    • /
    • 2019
  • The purpose of this study is to estimate the wear volumes of engine journal bearings operating at variable angular velocity of a shaft in the beginning of firing start-up cycle. To do this, first we find the potential region of wear scar on engine journal bearings where the applied bearing load and crank shaft velocity are variable. The potential wear regions are discovered by finding minimum oil film thickness at every crank angle existing below most oil film thickness scaring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Then we calculate the wear volume from the wear depth and two wear angles decided by the magnitude of each film thickness lower than MOFTSW at every crank angle. The results show that the expected wear region is located at a few bearing angles after and/or behind the upper center of a big-end bearing and the lower center of a main bearing. And the real wear region is similar to the estimated wear region. Further we find that the wear scar on an engine journal bearing may occur at re-starting time after switch-off of a start motor especially under the condition of high oil temperature.

The influence of various core designs on stress distribution in the veneered zirconia crown: a finite element analysis study

  • Ha, Seung-Ryong;Kim, Sung-Hun;Han, Jung-Suk;Yoo, Seung-Hyun;Jeong, Se-Chul;Lee, Jai-Bong;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.187-197
    • /
    • 2013
  • PURPOSE. The purpose of this study was to evaluate various core designs on stress distribution within zirconia crowns. MATERIALS AND METHODS. Three-dimensional finite element models, representing mandibular molars, comprising a prepared tooth, cement layer, zirconia core, and veneer porcelain were designed by computer software. The shoulder (1 mm in width) variations in core were incremental increases of 1 mm, 2 mm and 3 mm in proximal and lingual height, and buccal height respectively. To simulate masticatory force, loads of 280 N were applied from three directions (vertical, at a $45^{\circ}$ angle, and horizontal). To simulate maximum bite force, a load of 700 N was applied vertically to the crowns. Maximum principal stress (MPS) was determined for each model, loading condition, and position. RESULTS. In the maximum bite force simulation test, the MPSs on all crowns observed around the shoulder region and loading points. The compressive stresses were located in the shoulder region of the veneer-zirconia interface and at the occlusal region. In the test simulating masticatory force, the MPS was concentrated around the loading points, and the compressive stresses were located at the 3 mm height lingual shoulder region, when the load was applied horizontally. MPS increased in the shoulder region as the shoulder height increased. CONCLUSION. This study suggested that reinforced shoulder play an essential role in the success of the zirconia restoration, and veneer fracture due to occlusal loading can be prevented by proper core design, such as shoulder.

Influence Line of Three- span Continuous Curved Box-Girder Bridge using Elastic Equation (탄성방정식을 이용한 3경간 연속곡선교의 영향선에 관한 연구)

  • 장병순;장준환;김수정
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2001
  • In this paper, a three-span continuous box girder is analysed by using elastic equation based on energy method, concerning the behaviour with the effects of bending and pure torsional moment. The statically indeterminate forces of a three-span continuous curved box girder are calculated by applying the principle of least work to this elastic equation. The influence line of shear force, bending moment, pure torsion, displacement and angle of rotation due to unit vortical load and unit torque for curved box girder are obtained. The internal forces of the curved box girder which the actual load is applied can be calculated using the influence line obtained from this study.

  • PDF

Critical Loads of Eccentrically Loaded Struts with Thin-Walled Open Sections (편심하중을 받는 박벽개단면 압축재의 임계하중)

  • 나영진;이수곤
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.135-140
    • /
    • 1996
  • Single angle or channel with thin-walled open section can be used as compression member for example as web member in truss. In this case the inevitable eccentricity due to fabrication is commonly neglected in structural design. However eccentricity effect should be considered in the member design, especially in case of compression member. The critical loads of compression members that buckle by twisting or by a combination of bending and twisting are to be determined by solving governing differential equations. In this paper, the investigations are limited to the rolled channels([), equal-leg angles(L), lipped channels(C) and the applied loads are assumed to have some eccentricities.

  • PDF

Evaluation of Behaviors on Mooring Line Embedded in Sand Using Centrifuge Test (원심모형실험을 이용한 모래지반에 관입된 계류선 거동 평가)

  • Lee, Hoon Yong;Kim, Surin;Kim, Jaehyun;Kim, Dong-Soo;Choo, Yun Wook;Kwo, Osoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • When an anchor penetrates and is installed under a seabed, a portion of the mooring line connected to the anchor is also embedded under the seabed. This embedded mooring line affects the capacity of the anchor in two ways. First, the frictional resistance that occurs between the mooring line and the seabed reduces the pulling force acting on the anchor. Second, the embedded part of the mooring line forms a reverse catenary shape due to the bearing resistance of the soil, so that an inclined pulling force is applied to the anchor. To evaluate the mooring line's effect on the capacity of an anchor in sand, centrifuge model tests were performed using two relative sand densities of 76% and 51% while changing the anchor depths. The test results showed that the load is reduced much more in deep and dense sand, and the inclination angle of the load is lower in shallow and loose sand.

Analysis of Wrinkling for Creased Thin Membrane (접힌 자국이 있는 멤브레인의 주름 거동 해석)

  • Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.851-858
    • /
    • 2008
  • In this paper, the wrinkling behavior of vertically creased corner-loaded square membranes was studied using geometrically nonlinear post-buckling analysis. The membranes were modeled using shell elements, and the meshes were seeded with semi-random geometrical imperfection to instigate the buckling deformation. A pristine and creased membranes with various initial deployment angles were considered in the analyses and the results were compared. Results showed that local wrinkles initiated near the corner where the higher load was applied, which grew to form a single diagonal global wrinkle as the load ratio increased. It was also found that the local wrinkle initiation and the global wrinkle formation were significantly dependent on the initial deployment angles.

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

A Study on the Detection of Misfire in Gasoline Engine via Walsh Transform (월쉬변환에 의한 가솔린엔진 실화검출에 관한 연구)

  • Lee, Tae-Pyo;Kim, Jong-Bu;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.6
    • /
    • pp.299-306
    • /
    • 2000
  • The primary cause of air pollution by vehicles is imperfect combustion of fuel. One of the most usual causes of this imperfect combustion is the misfire in IC(Intenal Combustion) engine. Recently it is obligated for an ECU to monitor the emission level and warn the driver in case of exceeding specified emission standards. Therefore, in order to comply with this OBD-II regulations, car makers are investing a considerable amount into technology which would enable the detection of misfire and the particular cylinder in which misfire is taking place. So far, it has been able to detect misfire using engine speed, which can be obtained crank angle. However, such a method posed a problem in analyzing at high speed and in recognizing the misfire from the load impact at bumpy road. In this paper, misfire detection is made possible by simple arithmetic using WDFT, especially at high engine speed. In addition, the moving window method of a Walsh function is applied to determine the cylinders under misfire in case of multiple misfires. An actual experiment was conducted to prove that WDFT is applicable to effective in computation speed and to same result in misfire detection and cylinder determination at idle, part load and bumpy road conditions.

  • PDF

A Study on the Application of Solar Energy System in Apartment Complex (공동주택단지에서의 태양에너지 시스템 적용에 관한 연구)

  • Jung, Sun-Mi;Chung, Min-Hee;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-48
    • /
    • 2009
  • In this study, through case studies, solar energy systems were coordinated with architectural plan elements and the others in apartment complex, and the energy performance was evaluated quantitatively through computer simulation PVSYST and RETScreen. As a results, in plan process of the application of solar energy systems in apartment complex, solar energy system should be considered as not only energy reducing technical element but also part of architectural plan element. And it must be considered with architectural plan elements, composition methods, energy storage methods, technical elements from the early basic plan stage. Photovoltaic system was installed on the wall facing the south and rooftop. The energy ratio of electric load was shown to be 5.5%. The result showed 7.2% when adding it to shading device additionally, and 6.4% in case of putting extra translucent module on windows. Active solar collecting system was applied on roof with the angle of 45. Maximum number of solar collector was 10 in a row, and the total solar collecting area was $915.00m^2$. The energy ratio of domestic water heating load by active solar hot water system is shown to be 11.4%.

  • PDF

A Study on Behavior of the Lateral Movement of Breakwater by Centrifuge model Experiments (원심모형실험에 의한 방파제의 수평변위 거동에 관한 연구)

  • Lee, Dong-Won;Kim, Dong-Gun;Jun, Sang-Hyun;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1473-1478
    • /
    • 2010
  • For the cassion type of breakwater under the condition of large wave loads, stability about lateral movement of breakwater was investigated by performing centrifuge model experiments. Prototype of breakwater was modelled by scaling down to centrifuge model and the soft ground reinforced with grouting was also reconstructed in the centrifuge model experiments. Sandy ground beneath breakwater was prepared with a soil sampled in field so that identical value of internal friction angle could be obtained. Centrifuge model experiments were carried out to reconstruct the construction sequence in field. Lateral static wave load was applied to the model caisson after the final stage of construction sequence was rebuilt and the measured lateral movement of caisson was compared with allowable value by the code to assess the stability about lateral movement of the breakwater.

  • PDF