• Title/Summary/Keyword: LncRNAs

Search Result 65, Processing Time 0.019 seconds

Prognostic Value of an Immune Long Non-Coding RNA Signature in Liver Hepatocellular Carcinoma

  • Rui Kong;Nan Wang;Chun li Zhou;Jie Lu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.958-968
    • /
    • 2024
  • In recent years, there has been a growing recognition of the important role that long non-coding RNAs (lncRNAs) play in the immunological process of hepatocellular carcinoma (LIHC). An increasing number of studies have shown that certain lncRNAs hold great potential as viable options for diagnosis and treatment in clinical practice. The primary objective of our investigation was to devise an immune lncRNA profile to explore the significance of immune-associated lncRNAs in the accurate diagnosis and prognosis of LIHC. Gene expression profiles of LIHC samples obtained from TCGA database were screened for immune-related genes. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate Cox analysis. Then, the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were performed to evaluate the capability of the immune lncRNA signature as a prognostic indicator. Six long non-coding RNAs were identified via correlation analysis and Cox regression analysis considering their interactions with immune genes. Subsequently, tumor samples were categorized into two distinct risk groups based on different clinical outcomes. Stratification analysis indicated that the prognostic ability of this signature acted as an independent factor. The Kaplan-Meier method was employed to conduct survival analysis, results showed a significant difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Additionally, data obtained from gene set enrichment analysis (GSEA) revealed several potential biological processes in which these biomarkers may be involved. To summarize, this study demonstrated that this six-lncRNA signature could be identified as a potential factor that can independently predict the prognosis of LIHC patients.

Alterations of mRNA and lncRNA profiles associated with the extracellular matrix and spermatogenesis in goats

  • Chen, Haolin;Miao Xiaomeng;Xu, Jinge;Pu, Ling;Li, Liang;Han, Yong;Mao, Fengxian;Ma, Youji
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.544-555
    • /
    • 2022
  • Objective: Spermatozoa are produced within the seminiferous tubules after sexual maturity. The expression levels of mRNAs and lncRNAs in testicular tissues are different at each stage of testicular development and are closely related to formation of the extracellular matrix (ECM) and spermatogenesis. Therefore, we set out to study the expression of lncRNAs and mRNAs during the different developmental stages of the goat testis. Methods: We constructed 12 RNA libraries using testicular tissues from goats aged 3, 6, and 12 months, and studied the functions of mRNAs and lncRNAs using the gene ontogeny (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Relationships between differentially expressed genes (DEGs) were analyzed by lncRNA-mRNA co-expression network and protein-protein interaction network (PPI). Finally, the protein expression levels of matrix metalloproteinase 2 (MMP2), insulin-like growth factor 2 (IGF2), and insulin-like growth factor-binding protein 6 (IGFBP6) were detected by western blotting. Results: We found 23, 8, and 135 differentially expressed lncRNAs and 161, 12, and 665 differentially expressed mRNAs that were identified between 3 vs 6, 6 vs 12, and 3 vs 12 months, respectively. GO, KEGG, and PPI analyses showed that the differential genes were mainly related to the ECM. Moreover, MMP2 was a hub gene and co-expressed with the lncRNA TCONS-0002139 and TCONS-00093342. The results of quantitative reverse-transcription polymerase chain reaction verification were consistent with those of RNA-seq sequencing. The expression trends of MMP2, IGF2, and IGFBP6 protein were the same as that of mRNA, which all decreased with age. IGF2 and MMP2 were significantly different in the 3 vs 6-month-old group (p<0.05). Conclusion: These results improve our understanding of the molecular mechanisms involved in sexual maturation of the goat testis.

Functional Roles of Long Non-coding RNA in Human Breast Cancer

  • Ye, Ni;Wang, Bin;Quan, Zi-Fang;Cao, San-Jie;Wen, Xin-Tian;Huang, Yong;Huang, Xiao-Bo;Wu, Rui;Ma, Xiao-Ping;Yan, Qi-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.5993-5997
    • /
    • 2014
  • The discovery of long noncoding RNA (LncRNA) changes our view of transcriptional and posttranscriptional regulation of gene expression. With application of new research techniques such as high-throughput sequencing, the biological functions of LncRNAs are gradually becoming to be understood. Multiple studies have shown that LncRNAs serve as carcinogenic factors or tumor suppressors in breast cancer with abnormal expression, prompts the question of whether they have potential value in predicting the stages and survival rate of breast cancer patients, and also as therapeutic targets. Focusing on the latest research data, this review mainly summarizes the tumorigenic mechanisms of certain LncRNAs in breast cancer, in order to provide a theoretical basis for finding safer, more effective treatment of breast cancer at the LncRNA molecular level.

LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p

  • Luan, Xiaotian;Wang, Yankui
    • Journal of Gynecologic Oncology
    • /
    • v.29 no.6
    • /
    • pp.95.1-95.17
    • /
    • 2018
  • Objective: Cervical cancer is one of the most common malignant tumors. Our previous results showed that long non-coding RNA (lncRNA) XLOC_006390 plays an important role in cervical cancer. In this study, we have explored the mechanism of action of lncRNA XLOC_006390. Methods: LncRNA XLOC_006390 was proposed to exercise its function as a competing endogenous RNA (ceRNA), and its potential targeted miRNAs was predicted through the database LncBase Predicted v.2. Two miRNAs, miR-331-3p, and miR-338-3p, were chosen for the study. Expression of miRNAs and lncRNA in cervical cancer cells and tissues was detected by reverse transcription polymerase chain reaction. To determine the correlation, silencing of XLOC_006390, over-expression of miR-331-3p, and miR-338-3p was performed in SiHa and Caski cell lines, respectively. Results: Based on the interactive effect between miRNA and lncRNA, miR-331-3p and miR-338-3p were significantly downregulated in cervical cancer cells and tissues, and their expression levels were negatively related to that of lncRNA. Our results also showed that the expression of miR-331-3p target gene NRP2, miR-338-3p target genes PKM2, EYA2 was significantly downregulated when the XLOC_006390 was knocked down. Further, XLOC_006390 was found to facilitate cervical cancer tumorigenesis and metastasis by downregulating miR-331-3p and miR-338-3p expression. Conclusion: Taken together, our study demonstrated that XLOC_006390 may serve as a ceRNA and reversely regulates the expression of miR-331-3p and miR-338-3p, thus facilitating cervical cancer tumorigenesis and metastasis.

Application of Long Non-coding RNAs in Gastric Cancer (위암에서 Long Non-coding RNA의 적용)

  • Lee, Sang Kil
    • The Korean journal of helicobacter and upper gastrointestinal research
    • /
    • v.18 no.3
    • /
    • pp.174-179
    • /
    • 2018
  • Gastric cancer remains a big problem in terms of incidence or mortality; various mechanisms to explain its development and progression have been studied. Recently, long non-coding RNAs (lncRNAs) have been spotlighted in the epigenetic mechanism of cancer development. Although lncRNAs have been consistently reported to be involved in the development and progression of various cancers, there is still a lot more to be studied about them. In this article, we would like to introduce lncRNAs related to gastric cancer in order to encourage gastroenterologists to study them.

Comparison of characteristics of long noncoding RNA in Hanwoo according to sex

  • Choi, Jae-Young;Won, KyeongHye;Son, Seungwoo;Shin, Donghyun;Oh, Jae-Don
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.696-703
    • /
    • 2020
  • Objective: Cattle were some of the first animals domesticated by humans for the production of milk, meat, etc. Long noncoding RNA (lncRNA) is defined as longer than 200 bp in nonprotein coding transcripts. lncRNA is known to function in regulating gene expression and is currently being studied in a variety of livestock including cattle. The purpose of this study is to analyze the characteristics of lncRNA according to sex in Hanwoo cattle. Methods: This study was conducted using the skeletal muscles of 9 Hanwoo cattle include bulls, steers and cows. RNA was extracted from skeletal muscle of Hanwoo. Sequencing was conducted using Illumina HiSeq2000 and mapped to the Bovine Taurus genome. The expression levels of lncRNAs were measured by DEGseq and quantitative trait loci (QTL) data base was used to identify QTLs associated with lncRNA. The python script was used to match the nearby genes Results: In this study, the expression patterns of transcripts of bulls, steers and cows were identified. And we identified significantly differentially expressed lncRNAs in bulls, steers and cows. In addition, characteristics of lncRNA which express differentially in muscles according to the sex of Hanwoo were identified. As a result, we found differentially expressed lncRNAs according to sex were related to shear force and body weight. Conclusion: This study was classified and characterized lncRNA which differentially expressed by sex in Hanwoo cattle. We believe that the characterization of lncRNA by sex of Hanwoo will be helpful for future studies of the physiological mechanisms of Hanwoo cattle.

Non-Coding RNAs in Caenorhabditis elegans Aging

  • Kim, Sieun S.;Lee, Seung-Jae V.
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.379-385
    • /
    • 2019
  • Non-coding RNAs (ncRNAs) comprise various RNA species, including small ncRNAs and long ncRNAs (lncRNAs). ncRNAs regulate various cellular processes, including transcription and translation of target messenger RNAs. Recent studies also indicate that ncRNAs affect organismal aging and conversely aging influences ncRNA levels. In this review, we discuss our current understanding of the roles of ncRNAs in aging and longevity, focusing on recent advances using the roundworm Caenorhabditis elegans. Expression of various ncRNAs, including microRNA (miRNA), tRNA-derived small RNA (tsRNA), ribosomal RNA (rRNA), PIWI-interacting RNA (piRNA), circular RNA (circRNA), and lncRNA, is altered during aging in C. elegans. Genetic modulation of specific ncRNAs affects longevity and aging rates by modulating established aging-regulating protein factors. Because many aging-regulating mechanisms in C. elegans are evolutionarily conserved, these studies will provide key information regarding how ncRNAs modulate aging and lifespan in complex organisms, including mammals.

Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN

  • Tao, Sisi;Wang, Weidong;Liu, Pengfei;Wang, Hua;Chen, Weirong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.449-458
    • /
    • 2019
  • Retinoblastoma (Rb) is one of the most common eye malignancies occur in childhood. The crucial roles of non-coding RNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been widely reported in Rb progression. In the present study, we found the expression of lncRNA T-cell leukemia/lymphoma 6 (TCL6) was significantly downregulated in Rb tissues and cell lines. Knockdown of lncRNA TCL6 promoted cell proliferation while reduced cell apoptosis in Rb cells. Moreover, lncRNA TCL6 serves as a sponge for miR-21, a previously-reported oncogenic miRNA in Rb, by direct targeting to negatively regulated miR-21 expression, therefore modulating Rb proliferation through miR-21. TCL6 overexpression inhibited Rb cell proliferation while miR-21 overexpression exerted an opposing effect; the effect of TCL6 overexpression was partially attenuated by miR-21 overexpression. PTEN/PI3K/AKT signaling pathway was involved in lncRNA TCL6/miR-21 axis modulating Rb cell proliferation. Taken together, lncRNA TCL6 serves as a tumor suppressor by acting as a sponge for miR-21 to counteract miR-21-mediated PTEN repression.

Circulating HOTAIR LncRNA Is Potentially Up-regulated in Coronary Artery Disease

  • Avazpour, Niloofar;Hajjari, Mohammadreza;Yazdankhah, Saeed;Sahni, Azita;Foroughmand, Ali Mohammad
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.25.1-25.5
    • /
    • 2018
  • Coronary artery disease (CAD) is one of the leading causes of death and disability all around the world. Recent studies have revealed that aberrantly regulated long non-coding RNA (lncRNA) as one of the main classes of cellular transcript plays a key regulatory role in transcriptional and epigenetic pathways. Recent reports have demonstrated that circulating lncRNAs in the blood can be potential biomarkers for CAD. HOTAIR is one of the most cited lncRNAs with a critical role in the initiation and progression of the gene expression regulation. Recent research on the role of the HOTAIR in cardiovascular disease lays the basis for the development of new studies considering this lncRNA as a potential biomarker and therapeutic target in CAD. In this study, we aimed to compare the expression of HOTAIR lncRNA in the blood samples of patients with CAD and control samples. The expression level was examined by semi-quantitative reverse transcriptase polymerase chain reaction technique. Our data shows that expression of HOTAIR is up-regulated in blood samples of patients with CAD.

Ginsenoside Rh2 upregulates long noncoding RNA STXBP5-AS1 to sponge microRNA-4425 in suppressing breast cancer cell proliferation

  • Park, Jae Eun;Kim, Hyeon Woo;Yun, Sung Hwan;Kim, Sun Jung
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.754-762
    • /
    • 2021
  • Background: Ginsenoside Rh2, a major saponin derivative in ginseng extract, is recognized for its anti-cancer activities. Compared to coding genes, studies on long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) that are regulated by Rh2 in cancer cells, especially on competitive endogenous RNA (ceRNA) are sparse. Methods: LncRNAs whose promoter DNA methylation level was significantly altered by Rh2 were screened from methylation array data. The effect of STXBP5-AS1, miR-4425, and RNF217 on the proliferation and apoptosis of MCF-7 breast cancer cells was monitored in the presence of Rh2 after deregulating the corresponding gene. The ceRNA relationship between STXBP5-AS1 and miR-4425 was examined by measuring the luciferase activity of a recombinant luciferase/STXBP5-AS1 plasmid construct in the presence of mimic miR-4425. Results: Inhibition of STXBP5-AS1 decreased apoptosis but stimulated growth of the MCF-7 cells, suggesting tumor-suppressive activity of the lncRNA. MiR-4425 was identified to have a binding site on STXBP5-AS1 and proven to be downregulated by STXBP5-AS1 as well as by Rh2. In contrast to STXBP5-AS1, miR-4425 showed pro-proliferation activity by inducing a decrease in apoptosis but increased growth of the MCF-7 cells. MiR-4425 decreased luciferase activity from the luciferase/STXBP5-AS1 construct by 26%. Screening the target genes of miR-4425 and Rh2 revealed that Rh2, STXBP5-AS1, and miR-4425 consistently regulated tumor suppressor RNF217 at both the RNA and protein level. Conclusion: LncRNA STXBP5-AS1 is upregulated by Rh2 via promoter hypomethylation and acts as a ceRNA, sponging the oncogenic miR-4425. Therefore, Rh2 controls the STXBP5-AS1/miR-4425/RNF217 axis to suppress breast cancer cell growth.