DOI QR코드

DOI QR Code

Ginsenoside Rh2 upregulates long noncoding RNA STXBP5-AS1 to sponge microRNA-4425 in suppressing breast cancer cell proliferation

  • Park, Jae Eun (Department of Life Science, Dongguk University-Seoul) ;
  • Kim, Hyeon Woo (Department of Life Science, Dongguk University-Seoul) ;
  • Yun, Sung Hwan (Department of Life Science, Dongguk University-Seoul) ;
  • Kim, Sun Jung (Department of Life Science, Dongguk University-Seoul)
  • Received : 2021.06.02
  • Accepted : 2021.08.24
  • Published : 2021.11.15

Abstract

Background: Ginsenoside Rh2, a major saponin derivative in ginseng extract, is recognized for its anti-cancer activities. Compared to coding genes, studies on long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) that are regulated by Rh2 in cancer cells, especially on competitive endogenous RNA (ceRNA) are sparse. Methods: LncRNAs whose promoter DNA methylation level was significantly altered by Rh2 were screened from methylation array data. The effect of STXBP5-AS1, miR-4425, and RNF217 on the proliferation and apoptosis of MCF-7 breast cancer cells was monitored in the presence of Rh2 after deregulating the corresponding gene. The ceRNA relationship between STXBP5-AS1 and miR-4425 was examined by measuring the luciferase activity of a recombinant luciferase/STXBP5-AS1 plasmid construct in the presence of mimic miR-4425. Results: Inhibition of STXBP5-AS1 decreased apoptosis but stimulated growth of the MCF-7 cells, suggesting tumor-suppressive activity of the lncRNA. MiR-4425 was identified to have a binding site on STXBP5-AS1 and proven to be downregulated by STXBP5-AS1 as well as by Rh2. In contrast to STXBP5-AS1, miR-4425 showed pro-proliferation activity by inducing a decrease in apoptosis but increased growth of the MCF-7 cells. MiR-4425 decreased luciferase activity from the luciferase/STXBP5-AS1 construct by 26%. Screening the target genes of miR-4425 and Rh2 revealed that Rh2, STXBP5-AS1, and miR-4425 consistently regulated tumor suppressor RNF217 at both the RNA and protein level. Conclusion: LncRNA STXBP5-AS1 is upregulated by Rh2 via promoter hypomethylation and acts as a ceRNA, sponging the oncogenic miR-4425. Therefore, Rh2 controls the STXBP5-AS1/miR-4425/RNF217 axis to suppress breast cancer cell growth.

Keywords

Acknowledgement

This work was supported by a grant from the Korean Society of Ginseng (2018); and by the Basic Science Research Program (NRF-2016R1D1A1B01009235) of the National Research Foundation of Korea, funded by the Ministry of Education, Science and Technology.

References

  1. Zhang H, Park S, Huang H, Kim E, Yi J, Choi S-K, Ryoo Z, Kim M. Anticancer effects and potential mechanisms of ginsenoside Rh2 in various cancer types (Review). Oncol Rep 2021;45:33. https://doi.org/10.3892/or.2021.7984
  2. Jia WW, Bu X, Philips D, Yan H, Liu G, Chen X, Bush JA, Li G. Rh2, a compound extracted from ginseng, hypersensitizes multidrug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol 2004;82:431-7. https://doi.org/10.1139/y04-049
  3. Wang Y-S, Lin Y, Li H, Li Y, Song Z, Jin Y-H. The identification of molecular target of (20S) ginsenoside Rh2 for its anti-cancer activity. Sci Rep 2017;7:12408. https://doi.org/10.1038/s41598-017-12572-4
  4. Huang J, Peng K, Wang L, Wen B, Zhou L, Luo T, Su M, Li J, Luo Z. Ginsenoside Rh2 inhibits proliferation and induces apoptosis in human leukemia cells via TNF-a signaling pathway. Acta Biochim Biophys Sin 2016;48:750-5. https://doi.org/10.1093/abbs/gmw049
  5. Chen Y, Liu Z-H, Xia J, Li X-P, Li KQ, Xiong W, Li J, Chen D-L. 20(S)-ginsenoside Rh2 inhibits the proliferation and induces the apoptosis of KG-1a cells through the Wnt/b-catenin signaling pathway. Oncol Rep 2016;36:137-46. https://doi.org/10.3892/or.2016.4774
  6. Li M, Zhang D, Cheng J, Liang J, Yu F. Ginsenoside Rh2 inhibits proliferation but promotes apoptosis and autophagy by down-regulating microRNA-638 in human retinoblastoma cells. Exp Mol Pathol 2019;108:17-23. https://doi.org/10.1016/j.yexmp.2019.03.004
  7. Wang Y, Xu H, Lu Z, Yu X, Lv C, Tian Y, Sui D. Pseudo-Ginsenoside Rh2 induces A549 cells apoptosis via the Ras/Raf/ERK/p53 pathway. Exp Ther Med 2018;15:4916-24.
  8. Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, et al. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020;203:112627. https://doi.org/10.1016/j.ejmech.2020.112627
  9. Chen Y, Shang H, Zhang S, Zhang X. Ginsenoside Rh2 inhibits proliferation and migration of medulloblastoma Daoy by down-regulation of microRNA-31. J Cell Biochem 2018;119:6527-34. https://doi.org/10.1002/jcb.26716
  10. Yingying C, Yuqiang Z, Wei S, Ying Z, Xiu D, Mingqi T. Ginsenoside Rh2 inhibits migration of lung cancer cells under hypoxia via mir-491. Anticancer Agents Med Chem 2019;19:1633-41. https://doi.org/10.2174/1871520619666190704165205
  11. Gao Q, Zheng J. Ginsenoside Rh2 inhibits prostate cancer cell growth through suppression of microRNA-4295 that activates CDKN1A. Cell Prolif 2018;51:e12438. https://doi.org/10.1111/cpr.12438
  12. Ginsenoside Rh2 differentially mediates microRNA expression to prevent chemoresistance of breast cancer. Asian Pac J Cancer Prev APJCP 2015;16:1105-9. https://doi.org/10.7314/APJCP.2015.16.3.1105
  13. Chen WW, Huang YF, Hu ZB, Liu YM, Xiao HX, Liu DB, Zhuang YZ. Microarray analysis of altered long non-coding RNA expression profile in liver cancer cells treated by ginsenoside Rh2. J Asian Nat Prod Res 2019;21:742-53. https://doi.org/10.1080/10286020.2018.1490273
  14. Jeong D, Ham J, Park S, Kim HW, Kim H, Ji HW, Kim SJ. Ginsenoside Rh2 suppresses breast cancer cell proliferation by epigenetically regulating the long noncoding RNA C3orf67-AS1. Am J Chin Med 2019;47:1643-58. https://doi.org/10.1142/s0192415x19500848
  15. Dong B, Pang TT. LncRNA H19 contributes to Rh2-mediated MC3T3-E1cell proliferation by regulation of osteopontin. Cell Mol Biol (Noisy-Le-Grand) 2017;63:1-6. https://doi.org/10.14715/cmb/2017.63.8.1
  16. Qi X, Zhang D-H, Wu N, Xiao J-H, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet 2015;52:710. https://doi.org/10.1136/jmedgenet-2015-103334
  17. Zheng X, Zhou Y, Chen W, Chen L, Lu J, He F, Li X, Zhao L. Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian cancer cells. Cell Physiol Biochem 2018;51:1340-53. https://doi.org/10.1159/000495552
  18. Kim H, Ji HW, Kim HW, Yun SH, Park JE, Kim SJ. Ginsenoside Rg3 prevents oncogenic long noncoding RNA ATXN8OS from inhibiting tumor-suppressive microRNA-424-5p in breast cancer cells. Biomolecules 2021:11.
  19. Kim HW, Jeong D, Ham J, Kim H, Ji HW, Choi EH, Kim SJ. ZNRD1 and its antisense long noncoding RNA ZNRD1-AS1 are oppositely regulated by cold atmospheric plasma in breast cancer cells. Oxid Med Cell Longev 2020;2020:9490567.
  20. Ji HW, Kim H, Kim HW, Yun SH, Park JE, Choi EH, Kim SJ. Genome-wide comparison of the target genes of the reactive oxygen species and nonreactive oxygen species constituents of cold atmospheric plasma in cancer cells. Cancers 2020;12:2640. https://doi.org/10.3390/cancers12092640
  21. Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2018;42:455-62. https://doi.org/10.1016/j.jgr.2017.05.003
  22. Chen S, Huang L, Li G, Qiu F, Wang Y, Yang C, Pan J, Wu Z, Chen J, Tian Y. LncRNA STXBP5-AS1 suppresses stem cell-like properties of pancreatic cancer by epigenetically inhibiting neighboring androglobin gene expression. Clin Epigenet 2020;12:168. https://doi.org/10.1186/s13148-020-00961-y
  23. Ham J, Jeong D, Park S, Kim HW, Kim H, Kim SJ. Ginsenoside Rg3 and Korean Red Ginseng extract epigenetically regulate the tumor-related long noncoding RNAs RFX3-AS1 and STXBP5-AS1. J Ginseng Res 2019;43:625-34. https://doi.org/10.1016/j.jgr.2019.02.004
  24. Shao S, Wang C, Wang S, Zhang H, Zhang Y. LncRNA STXBP5-AS1 suppressed cervical cancer progression via targeting miR-96-5p/PTEN axis. Biomed Pharmacother 2019;117:109082. https://doi.org/10.1016/j.biopha.2019.109082
  25. Cen D, Huang H, Yang L, Guo K, Zhang J. Long noncoding RNA STXBP5-AS1 inhibits cell proliferation, migration, and invasion through inhibiting the PI3K/AKT signaling pathway in gastric cancer cells. OncoTargets Ther 2019;12:1929-36. https://doi.org/10.2147/OTT.S194463
  26. Ota T, Fujikawa-yamamoto K, Zong Zp, Yamazaki M, Odashima S, Kitagawa I, Abe H, Arichi S. Plant-glycoside modulation of cell surface related to control of differentiation in cultured B16 melanoma cells. Canc Res 1987;47:3863.
  27. Jiang Y-S, Jin Z-X, Umehara H, Ota T. Cholesterol-dependent induction of dendrite formation by ginsenoside Rh2 in cultured melanoma cells. Int J Mol Med 2010;26:787-93.
  28. Volovat SR, Volovat C, Hordila I, Hordila D-A, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, et al. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: a review. Front Oncol 2020;10:526850. https://doi.org/10.3389/fonc.2020.526850
  29. Karreth FA, Pandolfi PP. ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Canc Discov 2013;3:1113-21. https://doi.org/10.1158/2159-8290.CD-13-0202
  30. Zhang L, Cao Y, Kou X, Che L, Zhou X, Chen G, Zhao J. Long non-coding RNA HCG11 suppresses the growth of glioma by cooperating with the miR-4425/MTA3 axis. J Gene Med 2019;21:e3074. https://doi.org/10.1002/jgm.3074
  31. Lu J, Zhou Y, Zheng X, Chen L, Tuo X, Chen H, Xue M, Chen Q, Chen W, Li X, et al. 20(S)-Rg3 upregulates FDFT1 via reducing miR-4425 to inhibit ovarian cancer progression. Arch Biochem Biophys 2020;693:108569. https://doi.org/10.1016/j.abb.2020.108569
  32. Zhao Y, Bu L, Yan H, Jia W. 20S-protopanaxadiol inhibits P-glycoprotein in multidrug resistant cancer cells. Planta Med 2009;75:1124-8. https://doi.org/10.1055/s-0029-1185477
  33. Fontanari Krause LM, Japp AS, Krause A, Mooster J, Chopra M, Muschen M, Bohlander SK. Identification and characterization of OSTL (RNF217) encoding a RING-IBR-RING protein adjacent to a translocation breakpoint involving ETV6 in childhood ALL. Sci Rep 2014;4:6565. https://doi.org/10.1038/srep06565