• Title/Summary/Keyword: Livestock odor

Search Result 91, Processing Time 0.02 seconds

Odor reduction effect of microbially activated peat in broiler houses (육계사에서의 미생물 활성 토탄의 악취저감 효과)

  • Kim, Gyurae;Lee, Sang-Joon;Kim, Taeyeon;Krisdianti, Krisdianti;Aufa, Sulhi;Min, Hyunsook;Go, Gyeongchan;Cho, Ho-Seong;Oh, Yeonsu
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.2
    • /
    • pp.111-116
    • /
    • 2022
  • The purpose of this study is to evaluate the reduction effect of microbially activated peat on odor generated by livestock farms. The odor gas was measured by stirring the livestock manure sample with the existing litter and the microbially activated peat (Healtha Peat) was developed by this research team. In outdoor farm experiment, the measurements were performed by comparing broilers farm using rice husks and microbially activated peat as litter. The weight, mortality, shipment date, and odor levels (NH3) were measured before and after experiment. The result showed that NH3 levels were reduced by 100% in the Healtha Peat mixed group, Healtha Peat and rice husks mixed group. In the peat mixed group, Healtha Peat and saw dust mixed group showed reduce value at 99.6% and 99.1%, respectively. However the rice husks mixed group and saw dust mixed group showed a relatively weak NH3 reduction effect with values of 57.5% and 84.8%, respectively. After 3 months, the Healtha Peat mixed group and Healtha Peat and rice husks mixed group showed the highest NH3 reduction effect persistence. In the outdoor farm experiment, NH3 was present in farms using rice husks, but not in farms using Healtha Peat. In farms using Healtha Peat, the mortality and NH3 were reduced by 75% and >90%, respectively. The average body weight increased 18% and resulted to 10% decrease in the shipping date. These results implied that microbially activated peat has a clear effect on farm NH3 reduction and affects the productivity of farm animals.

Conducted to Verify the Effect of Chlorine Dioxide (ClO2) on Odor Reduction at a Compost Facility (이산화염소 가스분무에 의한 퇴비장 악취저감 효과)

  • Song, J.I.;Jeon, J.H.;Lee, J.Y.;Park, K.H.;Cho, S.B.;Hwang, Y.H.;Kim, D.H.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.1-6
    • /
    • 2012
  • This study was conducted to verify the effect of chlorine dioxide ($ClO_2$) on odor reduction at a commercial swine facility consisting of a compost ficility. Compost facility in $NH_3$ concentration was around 550 ppm and less than 78 ppm before and after the $ClO_2$ spraying, respectively, which was over 86% reduction. There was no H2S detection. $NH_3$ concentration was around 420 ppm and less than 35 ppm before and after the $ClO_2$ spraying, respectively, which was over 83% reduction. $H_2S$ concentration was around 210 ppb and less than 32 ppb before and after the $ClO_2$ spraying, respectively, which was over 85% reduction. Hence, $ClO_2$ spraying at windowless barns was compost facility decreased malodor such as $NH_3$.

A study on identifying factors of poultry complex odor using machine learning models (기계학습 모형을 이용한 양계 복합 악취의 요인 파악에 대한 연구)

  • Doyun Kim;Jaehoon Kim;Junsu Park;Siyoung Seo;Jaeeun Kim;Byeong-jun Yang;Tae-Young Heo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.485-497
    • /
    • 2024
  • With the development of modern society, the number of livestock is increasing, and the corresponding odor is recognized as a serious social problem. In particular, the consumption of poultry meat, such as chicken, duck, and turkey, is expected to rise steeply, making odor problems near poultry farms. To address the problem, it is important to understand the influence of odor components on the complex odor. In this study, the odor data obtained from poultry farms were used to predict the complex odor using machine learning models and analyze the influence of the components. Furthermore, we analyze the differences in the amount of the odor components at the site boundary, compost site, inside the farm, and outside the farm using analysis of variance. The analysis showed that ammonia, trimethylamine, dimethyldisulfide, and acetaldehyde have a high effect on the complex odor. In particular, ammonia, trimethylamine, and acetaldehyde have different amount of the occurence by the location.

Mastitis with Proteus mirabilis in Brittany Spaniel, a case (Brittany Spaniel에서 Proteus mirabilis에 의한 유방염 발생: 증례)

  • Lee, Jeong-Won;Chu, Keum-Suk;Kwak, Kil-Han;Ko, Won-Seuk;Song, Hee-Jong
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.3
    • /
    • pp.215-218
    • /
    • 2009
  • The dog breeding kennel bacterial infection are very significant in perinatal mortality. In many case, Staphylococcus aureus, Streptococcus, and Escherichia coli were infected in intra-uterine or by the genital tract to the puppies, and they are cause of septicemic death of the puppies and clinical mastitis of bitch, leading to septicemic death of newborn puppies. Severe mastitis due to bacterial infection was diagnosed in a 2 year-old female Brittany Spaniel which loss 6 puppies with odor small rice sharp white diarrhea of nine puppies. Bright curd milk and intestinal sample were inoculated on MacConkey agar, blood agar and brain heart infusion agar, and incubated at $37^{\circ}C$ for 24-48 hrs. Gram negative colonies isolated from these sample which were characterized as Glu, Ure, $H_2S$, Orn, Cit, and Cl, and were identified by Microscan Walk-Aways Baxter, American Type Culture Collection, USA) as Proteus mirabils. The isolate was more sensitive to ampicillin, gentamicin, cefoxitin, cefuroxime, and cefazidime. In this results, we confirmed that cause bacteria of septicemic death in puppies was P. mirabilis.

Composting High Moisture Materials : Bio-Drying Livestock Manure in a Sequentially Fed Reactor

  • Lee, J.H.;Park, H.L.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.701-710
    • /
    • 1996
  • Composting has gained rapid acceptance as a method of recyling relatively dry organic materials such as leaves and brush and , when alternative disposal costs are high, even moist materials such as grass clippings and dewatered sewage sludges. However, as moisture contents rise above 60% , the need for a dry bulking amendment increase the costs of composting , both by direct purchases of amendment and though increased reactor capacity and materials handling requirements. High moisture materials also present increased risks of anaerobic odor formation through reduced oxygen transport (Miller , 1991) . These costs and operational challengers often constrain the opportunities to compost high moisture materials such as agricultural manures. During the last several decades economies of scale in livestock production have been increasing livestock densities and creating manure management challenges throughout the world. This issue is particularly pressing in Korea, where livestock arms typically manage little or no cropland, and the nutrients and boichemical oxygen demand in manure pose a serious threat to water quality. Composting has recently become popular as a means of recycling manure into products for sale off the farm, but bulking amendments (usually sawdust) are expensive designed to minimize bulking agent requirements by using the energy liberated by decompostion. In this context the composting reactor is used as a biological dryer, allowing the repeated use of bulking amendment with several batches of manure.

  • PDF

The investigation of combined ventilation-biofilter systems using recycled treated wastewater on odor reduction efficiency

  • Febrisiantosa, Andi;Choi, Hong L.;Renggaman, Anriansyah;Sudiarto, Sartika I.A.;Lee, Joonhee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1209-1216
    • /
    • 2020
  • Objective: The present study aimed to evaluate the performance of odor abatement by using two different ventilation-biofilter systems with recycled stablized swine wastewater. Methods: The performance of odor removal efficiency was evaluated using two different ventilation-biofilter-recycled wastewater arrangements. A recirculating air-flow ventilation system connected to a vertical biofilter (M1) and a plug-flow ventilation system connected to a horizontal biofilter (M2) were installed. Water dripping over the surface of the biofilter was recycled at a flow rate of 0.83 L/h in summer and 0.58 L/h in winter to reduce odorous compounds and particulate matter (PM). The experiments were performed for 64 days with M1 and M2 to investigate how these two ventilation-biofilter systems influenced the reduction of odor compounds in the model houses. Odorous compounds, NH3 and volatile organic compounds (VOCs) were analyzed, and microclimatic variables such as temperature, humidity, and PM were monitored. Results: Ammonia concentration inside M1 was about 41% higher on average than that in M2. PM and total suspended particles (TSPs) inside M1 were about 62.2% and 69.9%, respectively, higher than those in M2. TSPs in the model house were positively correlated with the concentration of NH3 and VOCs. Conclusion: M2 emitted lower concentration of odorous compounds than M1. Moreover, M2 could maintain the optimum temperature condition for a swine house during the cooler season. The plug-flow ventilation-horizontal biofilter system could be used for pig houses to minimize air pollution produced by swine farming activities and maintain optimum microclimate conditions for pigs.

SLURRY UTILIZATION SYSTEM IN THE PADDY FIELD

  • I. H. Oh;Kim, K.D.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.784-791
    • /
    • 2000
  • To improve the uniformity of slurry spreading and to reduce the odor problem, a hose slurry spreader was developed, which spread the slurry near to the surface of the soil. First, the uniformity of slurry spreading was investigated. The best result of 8.1 % CV was obtained at the rotor speed of 250 rpm than any other speeds for the swine slurry, which contains 13.6% of dry matter. In case of dairy cattle slurry, which contains 8.2% of dry matter, the uniformity has the best result of CV 7.2% by high rotor speed of 330 rpm. A high speed of rotor has built a sufficient pressure in the distributor and discharged a uniform quantity of slurry through the hoses. Therefore, in practical use one should work with rotor speed over 300 rpm to maximize the uniformity of slurry spreading. Second, odor test was done with the swine slurry. While the conventional spreader shows ∑ value 440, the hose slurry spreader and its combination of disk harrow show ∑ value 258 and 184 respectively. With the air dilution sensual test and a 3-point odor bag, the conventional spreader shows 66.9 or 35.4 point and by the hose slurry spreader is 9.7 or 11.1 point. So, the developed spreader was found to have a greater effect on the reduction of odor problem. Finally, it is recommended to spread certain amount of the slurry for paddy field equivalent to the chemical fertilizer based on the N-content. It means 22 tons of swine slurry per ha. Since most of the livestock farms possess less arable land, a system of linking farms is necessary to utilize the slurry crossover the farms. The cost of slurry utilization including filling, transport spreading and brokerage is 3200-6800 Won/㎥ in accordance with the transport distance.

  • PDF

Chemical properties of liquid swine manure for fermentation step in public livestock recycling center

  • Lee, Dong Sung;Lee, Jae-Bong;Lee, Myoung-Yun;Joo, Ri-Na;Lee, Kyo-Suk;Min, Se-Won;Hong, Byeong-deok;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.424-431
    • /
    • 2016
  • The nutrients in livestock manure produced during fermentation processes in public livestock recycling centers are used as fertilizers. However, the large amounts of swine manure produced in intensive livestock farms can be a nonpoint source of pollution. In this experiment, we investigated the chemical properties, inorganic components, and heavy metal contents in 101 samples of liquid swine manure collected from 28 public livestock recycling centers throughout the nation. Results showed that the average pH of the samples was alkaline (pH range 5.18 to 9.54), and their maximum EC was $53.2dS\;m^{-1}$. The amounts of total nitrogen and total phosphorus were in the range of 1000 - 2000 and $200-800mg\;L^{-1}$ while potassium, which constituted 47% of the total inorganic ions recovered from the liquid swine manure, amounted to $1500mg\;L^{-1}$. The most distinctive heavy metals recovered from the liquid swine manure were copper and zinc although the amounts of both heavy metals were much lesser than those of the standards as livestock liquid fertilizer set by the Rural Development Administration. On the other hand, the amount of nitrogen decreased rapidly with an increasing fermentation period from immature to mature, assumed to be lost as volatile compounds, such as ammonia, which are the major odor components during the fermentation process.

Volatile Fatty Acids Production During Anaerobic and Aerobic Animal Manure Bio-treatment

  • Hong, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.219-232
    • /
    • 2007
  • Odors from manures are a major problem for livestock production. The most significant odorous compounds in animal manure a.e volatile fatty acids(VFAs). This work reviews the VFAs from the anaerobic sequencing biofilm batch reactor(ASBBR), anaerobic sequencing batch reactor(ASBR), solid compost batch reactor(SCBR), and aerobic sequencing batch reactor(SBR) associated with the animal manure biological treatment. First, we describe and quantify VFAs from animal manure biological treatment and discuss biofiltration for odor control. Then we review certain fundamentals aspects about Anaerobic and aerobic SBR, composting of animal manure, manure compost biofilter for odorous VFAs control, SBR for nitrogen removal, and ASBR for animal wastewater treatment systems considered important for the resource recovery and air quality. Finally, we present an overview for the future needs and current experience of the biological systems engineering for animal manure management and odor control.

  • PDF

Characteristic of Odorous Compounds Emitted from Livestock Waste Treatment Facilities Combined Methane Fermentation and Composting Process (메탄발효와 퇴비화 공정이 연계된 가축분뇨 처리시설에서 발생되는 악취물질 특성 조사)

  • Ko, Han Jong;Kim, Ki Youn;Kim, Hyeon Tae;Ko, Moon Seok;Higuchi, Takasi;Umeda, Mikio
    • Journal of Animal Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.391-400
    • /
    • 2008
  • Odor management is significantly concerned with sustainable livestock production because odor nuisance is a primary cause for complaint to neighbors. This study was conducted to measure the concentration of odorous compounds, odor intensity, and odor offensiveness at unit process in animal waste treatment facility combined composting and methane fermentation process by an instrumental analysis and direct olfactory method. Ammonia, sulfur-containing compounds, and volatile fatty acid were analyzed at each process units and boundary area in summer and winter, respectively. Higher concentration of odorants occurred in the summer than in the winter due to high ambient temperature. The maximum concentration of odorants was detected in composting pile when mixed manure was being turned followed by inlet, curing, outlet, and screen & packing process. Highest concentration of detected odorous compounds was ammonia ranging from 3.4 to 224.7 ppm. Among the sulfur-containing compounds measured, hydrogen sulfide was a maximum level of 2.3 ppm and most of them exceeded reported odor detection thresholds. Acetic acid was the largest proportion of VFA generated, reaching a maximum of 51 to 89%, followed by propionic and butyric acid at 1.9 to 35% and 1.8 to 15%, respectively. Malodor assessment by a human panel appeared a similar tendency in instrumental analysis data. Odor quotient for predicting major odor-causing compounds was calculated by dividing concentrations measured in process units by odor detection thresholds. In the composting process, hydrogen sulfide, ammonia, dimethyl sulfide, and methyl mercaptan were deeply associated with odor-causing compounds, while the major malodor compounds in the inlet process were methyl mercaptan, hydrogen sulfide, and butyric acid.