• 제목/요약/키워드: Livestock emissions

검색결과 89건 처리시간 0.027초

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

배추 재배지에서 요소시비에 따른 암모니아 배출계수 산정 (Ammonia Gas Emission Factor at different Application Rate of Urea in Chinese Cabbage Cultivation)

  • 이수림;이재훈;노준석;박유진;최아영;김신실;이슬린;박종환;서동철
    • 한국환경농학회지
    • /
    • 제41권1호
    • /
    • pp.41-49
    • /
    • 2022
  • BACKGROUND: The main source of ammonia in soils, South Korea is agricultural emissions (e.g., fertilizer application and livestock manure), with the recent emission inventories reporting them to be approximately 80% of the total emissions. Ammonia as a pollutant is originated largely from agricultural activity and is an important contributor to air quality issues in South Korea. The importance of ammonia in agricultural land is also emerging. In this study, the characteristics of ammonia emission from Chinese cabbage cultivation fields with application rates of urea sere were evaluated. METHODS AND RESULTS: The ammonia emission characteristics were investigated at the different urea application rates (0, 160, 320, and 640 kg ha-1) and the ammonia emission factor in the Chinese cabbage cultivation field was calculated. As application rate of urea application increased, ammonia emissions increased proportionally. In 2020 and 2021, cumulative ammonia emissions with urea 320 kg ha-1 treatment were 39.3 and 35.2 kg ha-1, respectively for 2020 and 2021. When urea fertilizer was applied, the ammonia emission factors were 0.1217 and 0.1358 NH4+-N kg N kg-1 in 2020 and 2021, respectively. CONCLUSION(S): Ammonia emissions increased as application rate of urea increased, and the average ammonia emission factor of the Chinese cabbage cultivation field for two years was 0.129 NH4+-N kg N kg-1.

왕겨 활성 바이오차 혼합 비율에 따른 우분 호기소화 시 온실가스 발생 특성 (Characteristics of Greenhouse Gas Emissions with Different Combination Rates of Activated Rice Hull Biochar during Aerobic Digestion of Cow Manure)

  • 노연희;정우진;정석주;정인호;나홍식;김민수;신중두
    • 한국환경농학회지
    • /
    • 제39권3호
    • /
    • pp.222-227
    • /
    • 2020
  • BACKGROUND: Among the biomass conversion techniques of livestock manure, composting process is a method of decomposing organic matter through microorganisms, and converting it into fertilizer in soil. The aerobic composting process is capable of treating cow manure in large quantities, and produces greenhouse gas as CO2 and N2O, although it has economical benefit. By using the activated rice hull biochar, which is a porous material, it was intended to mitigate the greenhouse gas emissions, and to produce the compost of which quality was high. Objective of this experiment was to estimate CO2 and N2O emissions through composting process of cow manure with different cooperated biochar contents. METHODS AND RESULTS: The treatments of activated rice hull biochar were set at 0%, 5%, 10% and 15%, respectively, during composting cow manure. The CO2 emission in the control was 534.7 L kg-1, but was 385.5 L kg-1 at 15% activated rice hull biochar. Reduction efficiency of CO2 emission was estimated to be 28%. N2O emission was 0.28 L kg-1 in the control, but was 0.03 L min-1 at 15% of activated rice hull biochar, estimating about 89% reduction efficiency. CONCLUSION: Greenhouse gas emissions during the composting process of cow manure can be reduced by mixing with 15% of activated rice hull biochar for eco-friendly compost production.

밭 토양에서 돈분 퇴비 시용방법에 따른 암모니아 휘산량 평가 (Evaluation of Ammonia Emission Following Application Techniques of Pig Manure Compost in Upland Soil)

  • 윤홍배;이연;이상인;김석철;이용복
    • 한국환경농학회지
    • /
    • 제28권1호
    • /
    • pp.15-19
    • /
    • 2009
  • 대기중으로 휘산되는 대부분의 암모니아는 농경지에서 시용하는 가축분뇨 퇴비와 질소비료에서 유래한다. 본 연구는 밭 토양에서 돈분 퇴비 시용방법에 따른 암모니아 휘산량을 소형원드터널 방법을 이용해서 정량적으로 평가하였다. 돈분 퇴비(20 Mg/ha) 표층살포(SA), 표층살포 후 즉시 경운(IRA), 표층 살포 3일 후 경운(RA-3d) 처리의 13일 동안 암모니아 휘산량은 각각 28.7, 8.7, 24.3 kg N/ha로 IRA 처리구는 SA 처리구에 비해 70% 저감효과를 가져왔다. 그리고 SA 처리구의 퇴비 처리 후 24시간 이내 휘산된 암모니아 양은 총 휘산량의 61%로 대부분의 암모니아는 시용 초기 짧은 시간 내에 휘산됨을 알 수 있었다. 석회와 퇴비 혼용시용 후 교반(L+C mix), 퇴비표층 살포 3일후 석회시용 교반(C+L3D), 석회시용 3일 후 퇴비시용 교반(L+C3D) 처리구의 22일 동안 총 암모니아 휘산량은 각각 40.1, 31.4, 27.7 kg/ha이었다. 따라서 가축분 퇴비 시용시 석회를 혼용하는 것은 피해야 하며, 만일 동일 작기내 시용이 불가피할 경우는 퇴비시용에 앞서 석회를 먼저 충분한 일수를 앞두고 시용하는 것이 암모니아 휘산량을 저감시킬 수 있다는 결론을 얻었다.

전과정평가 방법을 이용한 가축분뇨/음식폐기물 통합 소화형 바이오가스 시설의 온실가스 배출량 평가 (Life Cycle Assessment of Greenhouse Gas Emissions from Livestock and Food Wastes Co-digestive Biogas Production System)

  • 남재작;윤영만;이영행;소규호;김창현
    • 한국환경농학회지
    • /
    • 제27권4호
    • /
    • pp.406-412
    • /
    • 2008
  • Biogas plant with anaerobic digestion is receiving high attention as a facility for both livestock waste treatment and electric power generation. Objective of this study was to perform life cycle assessment (LCA) of a biogas plant which incorporates swine and food waste (7:3) as source materials for biogas production. In addition, the biogas production process was compared with the prevalent composting method as a reference in the aspects of green house gas (GHG) reduction potential and environmental impact. The biogas method was capable of reducing 52 kg $CO_2$ eq. emission per ton of swine/food waste, but the composting process was estimated to emit 268 kg $CO_2$ eq. into air. The biogas method was evaluated as more beneficial to the environment by mitigating the impact on abiotic depletion potential (ADP), global warming potential (GWP), ozone depletion potential (ODP), eutrophication potential (EP), and photochemical ozone creation potential (POCP), but not to acidification potential (AP).

Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations

  • Lee, Shin Ja;Jeong, Jin Suk;Shin, Nyeon Hak;Lee, Su Kyoung;Kim, Hyun Sang;Eom, Jun Sik;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1864-1872
    • /
    • 2019
  • Objective: This study was conducted to evaluate the effects of Ecklonia stolonifera (E. stolonifera) extract addition on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Methods: One cannulated Holstein cow ($450{\pm}30kg$) consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (09:00 and 17:00) at 2% of body weight with free access to water and mineral block were used as rumen fluid donors. In vitro fermentation experiment, with timothy hay as substrate, was conducted for up to 72 h, with E. stolonifera extract added to achieve final concentration 1%, 3%, and 5% on timothy hay basis. Results: Administration of E. stolonifera extract to a ruminant fluid-artificial saliva mixture in vitro increased the total gas production. Unexpectedly, E. stolonifera extracts appeared to increase both methane emissions and hydrogen production, which is contrasts with previous observations with brown algae extracts used under in vitro fermentation conditions. Interestingly, real-time polymerase chain reaction indicated that as compared with the untreated control the ciliate-associated methanogen and Fibrobacter succinogenes populations decreased, whereas the Ruminococcus flavefaciens population increased as a result of E. stolonifera extract supplementation. Conclusion: E. stolonifera showed no detrimental effect on rumen fermentation characteristics and microbial population. Through these results E. stolonifera has potential as a viable feed supplement to ruminants.

시설잎들깨 재배의 퇴비 시용에 의한 암모니아 배출량 (Estimation of Ammonia Emission with Compost Application in Plastic House for Leafy Perilla Cultivation)

  • 홍성창;김진호;김민욱
    • 한국환경농학회지
    • /
    • 제40권3호
    • /
    • pp.149-160
    • /
    • 2021
  • BACKGROUND: Concerns have been raised about the impact of recent high concentrations of fine dust on human health. Ammonia(NH3) reacts with sulfur oxides and nitrogen compounds in the atmosphere to form ultrafine ammonium sulfate and ammonium nitrate (PM2.5). There is a growing need for accurate estimates of the amount of ammonia emitted during agricultural production. Therefore, in this study, ammonia emissions generated from the cultivation of leafy perilla in plastic houses were determined. METHODS AND RESULTS: Cow manure compost, swine manure compost, and poultry manure compost each at 34.6 ton ha-1, the amount commonly used by farmers in the field, was sprayed on the soil surface. Just after spraying cow manure compost, swine manure compost, and poultry manure compost, the ammonia was periodically measured and analyzed to be 22.5 kg ha-1, 22.8 kg ha-1, and 85.2 kg ha-1, respectively. The emission factors were estimated at 70.0 kg-NH3 ton-N, 62.8 kg-NH3 ton-N, and 234.1 kg-NH3 ton-N, respectively. Most ammonia was released in the two weeks after application of the compost and then the amount released gradually decreased. CONCLUSION: Therefore, it is necessary to improve the emission factor through a study on the estimation of ammonia emission by type of livestock manure and major farming types such as rice fields and uplands, and to update data on the production, distribution, and sales of livestock manure.

Methane Production of Different Forages in In vitro Ruminal Fermentation

  • Meale, S.J.;Chaves, A.V.;Baah, J.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권1호
    • /
    • pp.86-91
    • /
    • 2012
  • An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on $CH_4$ production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at $55^{\circ}C$ and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall's buffer and rumen fluid were incubated under anaerobic conditions at $39^{\circ}C$ for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, $CH_4$ production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate $CH_4$ emissions without compromising digestion. Grazing of these two species may be a strategy to reduce $CH_4$ emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface

  • Gautam, Dhan Prasad;Rahman, Shafiqur;Borhan, Md Saidul;Engel, Chanda
    • Journal of Animal Science and Technology
    • /
    • 제58권6호
    • /
    • pp.22.1-22.15
    • /
    • 2016
  • Background: Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA) and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. Methods: A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 %) on the manure composition and gaseous emissions (methane-$CH_4$, nitrous oxide-$N_2O$, carbon dioxide-$CO_2$ and hydrogen sulfide-$H_2S$) from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota's summer-fall climatic condition. Air and manure sampling was conducted five times at a 20-30 day intervals. Results: Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. Conclusions: It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.

Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage

  • Subepang, Sayan;Suzuki, Tomoyuki;Phonbumrung, Thamrongsak;Sommart, Kritapon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권4호
    • /
    • pp.548-555
    • /
    • 2019
  • Objective: The main objective of this study was to evaluate the effect of different feeding levels of a total mixed ration silage-based diet on feed intake, total tract digestion, enteric methane emissions, and energy partitioning in two beef cattle genotypes. Methods: Six mature bulls (three Thai natives, and three Thai natives - Charolais crossbreeds) were assigned in a replicated $3{\times}3$ Latin square design, with cattle breed genotype in separate squares, three periods of 21 days, and three energy feeding above maintenance levels (1.1, 1.5, and 2.0 MEm, where MEm is metabolizable energy requirement for maintenance). Bulls were placed in a metabolic cage equipped with a ventilated head box respiration system to evaluate digestibility, record respiration gases, and determine energy balance. Results: Increasing the feeding level had no significant effect on digestibility but drastically reduced the enteric methane emission rate (p<0.05). Increasing the feeding level also significantly increased the energy retention and utilization efficiency (p<0.01). The Thai native cattle had greater enteric methane emission rate, digestibility, and energy utilization efficiency than the Charolais crossbred cattle (p<0.05). The daily metabolizable energy requirement for maintenance in Thai native cattle ($388kJ/kg\;BW^{0.75}$, where $BW^{0.75}$ is metabolic body weight) was 15% less than that in Charolais crossbred cattle ($444kJ/kg\;BW^{0.75}$). Conclusion: Our results suggested that the greater feeding level in zebu beef cattle fed above maintenance levels resulted in improved energy retention and utilization efficiency because of the reduction in enteric methane energy loss. The results also indicated higher efficiency of metabolisable energy utilization for growth and a lower energy requirement for maintenance in Bos indicus than in Bos taurus.