• Title/Summary/Keyword: Live Load

Search Result 341, Processing Time 0.026 seconds

Structural Behavior of the Buried flexible Conduits in Coastal Roads Under the Live Load (활하중이 작용하는 해안도로 하부 연성지중구조물의 거동 분석)

  • Cho, Sung-Min;Chang, Yong-Chai
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.323-328
    • /
    • 2002
  • Soil-steel structures have been used for the underpass, or drainage systems in the road embankment. This type of structures sustain external load using the correlations with the steel wall and engineered backfill materials. Buried flexible conduits made of corrugated steel plates for the coastal road was tested under vehicle loading to investigate the effects of live load. Testing conduits was a circular structure with a diameter of 6.25m. Live-load tests were conducted on two sections, one of which an attempt was made to reinforce the soil cover with the two layers of geo-gird. Hoop fiber strains of corrugated plate, normal earth pressures exerted outside the structure, and deformations of structure were instrumented during the tests. This paper describes the measured static and dynamic load responses of structure. Wall thrust by vehicle loads increased mainly at the crown and shoulder part of the conduit. However additional bending moment by vehicle loads was neglectable. The effectiveness of geogrid-reinforced soil cover on reducing hoop thrust is also discussed based on the measurements in two sections of the structure. The maximum thrusts at the section with geogrid-reinforced soil cover was 85-92% of those with un-reinforced soil cover in the static load tests of the circular structure; this confirms the beneficial effect of soil cover reinforcement on reducing the hoop thrust. However, it was revealed that the two layers of geogrid had no effect on reducing the overburden pressure at the crown level of structure. The obtained values of DLA decrease approximately in proportion to the increase in soil cover from 0.9m to 1.5m. These values are about 1.2-1.4 times higher than those specified in CHBDC.

The vibration detection and analysis of 3-phase cast resin transformer in less than 50% load conditions (50% 미만 부하조건에서의 3상 몰드변압기 진동 측정과 분석)

  • Shong, Kil-Mok;Bang, Sun-Bae;Kim, Chong-Min;Kim, Young-Seok;Choi, Myung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.992-997
    • /
    • 2012
  • In this paper, we were analyzed the vibration characteristics of the three-phase cast resin transformer using less than 50% of load in the field. Most of the cast resin transformer is less than 50% in the domestic field is used for load conditions. Consisting of a solid insulator cast resin transformer is generating lots of noise and vibration. In addition, because it is affected by Joule 's heat is used in light load conditions. As a results, the transformer vibrations at frequencies below about from 200Hz to 500Hz were detected. Vibration velocity depends on the load variations were found. Load up to approximately 20-30% in most cases the vibration velocity was found at 4,000 ${\mu}m/s$ or less, 8,000 ${\mu}m/s$ or more. Vibration frequency at light load conditions were generated at the 120Hz, 240Hz, 360Hz and 480Hz. At the load condition of from 10% to 20%, vibration velocity is higher than another. Most of the vibration velocity were identified at the 1,000 ${\mu}m/s$ or less. Using the vibration frequency and velocity measurements data, the load on the cast resin transformer analyzed the correlation of the burden. Therefore, this data could be found in the vibration characteristics of the light-load conditions. If the field measurements using the data perform diagnostics on the transformer, it's expected to be very effective.

An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine

  • Li, Wenyu;Yin, Fan;Bu, Zixuan;Liu, Yuying;Zhang, Yongqing;Chen, Xiabing;Li, Shaowen;Li, Lu;Zhou, Rui;Huang, Qi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.278-286
    • /
    • 2022
  • Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.

Effects of Geometric Characteristics on the Ultimate Behavior of Steel Cable-stayed Bridges (기하학적 특성이 강사장교의 극한 거동에 미치는 영향)

  • Kim, Seungjun;Shin, Do Hyoung;Choi, Byung Ho;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.327-336
    • /
    • 2012
  • This study presents the effects of various geometric properties on the ultimate behavior of steel cable-stayed bridges. In general, cable-stayed bridges are well known as a very efficient structural system, because of those geometric characteristics, but at the same time, the structure also shows complex structural behavior including various nonlinearities which significantly affect to the ultimate behavior of the structure. In this study, the effects of various geometric properties of main members on the ultimate behavior under specific live load cases, which had been studied in previous studies, were investigated using a rational analytical method. In this parametric study, sectional dimensions of main members were considered as main geometric parameters. For the rational ultimate analysis under specific live load cases, the 2-step analysis method, which contains initial shape analysis and live load analysis, was used. As the analysis model, 920.0 m long steel cable-stayed bridges were used and two different types of cable arrangement were considered to study the effect of the cable arrangement types. Through this study, the effects of various geometric properties on the characteristics of the ultimate behavior of steel cable-stayed bridges were intensively investigated.

Evaluation of the Load Carrying Capacity of Existing Bridges with Long Span Hollow Web Prestressed Concrete Girder by Static Load Test (정적재하시험을 통한 장경간 중공 웨브 PSC 거더교의 내하력 평가)

  • Kim, Seong-Kyum;Jang, Pan-Ki;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.97-102
    • /
    • 2018
  • Conventional PSC I type girders were adversely affected by the self - weight of concrete, anchorage, prestressing. In order to overcome this problem, PSC girder was constructed with a hollow in the web and developed a hollow web PSC type I girder which is applicable to 50 - 70m span by multistage stressing and then actually long span hollow web PSC girder bridge was constructed. In this study, the results of Static Load Test and the Finite Element Analysis of the hollow web PSC I girder bridges were compared and analyzed, and the Load Carrying Capacity and safety of PSC girder bridges were evaluated. The Static Load Test and the numerical analysis results of this bridge showed similar tendency and the behavior of the hollow web PSC I girder was well simulated. The entire girders of the bridges had sufficient Load Carrying Capacity under the live load design condition and the bridges satisfied the safety and confirmed the appropriateness of the construction.

Characteristic Behavior of In-plane Buckling of Circular Arch Ribs Subjected to Partial Distributed Loading (부분 등분포 하중을 받는 원형아치 리브의 면내 좌굴 거동특성)

  • Kim, Sung-Hoon;Moon, Ji-Ho;Yoon, Ki-Yong;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.57-65
    • /
    • 2005
  • When arch ribs are subjected unsymmetrical load, buckling strength Is lower than strength of arch ribs subjected symmetrical load. However, A few study about the buckling strength of arch ribs subjected unsymmetrical load is performed compare with study about arch ribs subjected symmetrical load. Several researchers(Deutch : 1940, Chang : 1973, Harrison : 1982) studied about arch ribs subjected unsymmetrical load and they found that unsymmetrical loading reduces the critical buckling load. But, their results are limited parabolic arch ribs. This paper focuses on circular arch ribs subjected to unsymmetrical loading. The result shows that the ratio of live and dead load length to cause smallest critical buckling load of arch ribs is $0.6{\sim}0.7$ under geometric nonlinear condition and $0.5{\sim}0.6$ under both material and geometrical nonlinear conditions.

Modeling for fixed-end moments of I-sections with straight haunches under concentrated load

  • Soto, Inocencio Luevanos;Rojas, Arnulfo Luevanos
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.597-610
    • /
    • 2017
  • This paper presents a mathematical model for fixed-end moments of I-sections with straight haunches for the general case (symmetrical and/or non-symmetrical) subjected to a concentrated load localized anywhere on beam taking into account the bending deformations and shear, which is the novelty of this research. The properties of the cross section of the beam vary along its axis "x", i.e., the flange width "b", the flange thickness "t", the web thickness "e" are constant and the height "d" varies along of the beam, this variation is linear type. The compatibility equations and equilibrium are used to solve such problems, and the deformations anywhere of beam are found by the virtual work principle through exact integrations using the software "Derive" to obtain some results. The traditional model takes into account only bending deformations, and others authors present tables considering the bending deformations and shear, but are restricted. A comparison between the traditional model and the proposed model is made to observe differences, and an example of structural analysis of a continuous highway bridge under live load is resolved. Besides the effectiveness and accuracy of the developed models, a significant advantage is that fixed-end moments are calculated for any cross section of the beam "I" using the mathematical formulas.

Numerical Verification of B-WIM System Using Reaction Force Signals

  • Chang, Sung-Jin;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.637-647
    • /
    • 2012
  • Bridges are ones of fundamental facilities for roads which become social overhead capital facilities and they are designed to get safety in their life cycles. However as time passes, bridge can be damaged by changes of external force and traffic environments. Therefore, a bridge should be repaired and maintained for extending its life cycle. The working load on a bridge is one of the most important factors for safety, it should be calculated accurately. The most important load among working loads is live load by a vehicle. Thus, the travel characteristics and weight of vehicle can be useful for bridge maintenance if they were estimated with high reliability. In this study, a B-WIM system in which the bridge is used for a scale have been developed for measuring the vehicle loads without the vehicle stop. The vehicle loads can be estimated by the developed B-WIM system with the reaction responses from the supporting points. The algorithm of developed B-WIM system have been verified by numerical analysis.

An Analytical Study on the Change of System Supports according to the Brace Installation (가새 설치 여부에 따른 시스템 동바리 거동변화에 대한 해석적 연구)

  • Oh, Byoung-Han;Choi, Byong J.
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.104-111
    • /
    • 2018
  • System supports are widely used in concrete construction due to the convenience and structural safety at the point of both installation and dismantling. However, there were frequent collapses in the construction sites due to the absence of both structural review and brace installations. Therefore, this paper examines the importance of braces in the system supports. In order to examine the importance of the brace, four types of braces were considered: 100% braces, 50% braces, 25% braces, and without braces. The maximum displacement of the 100% braced model was 0.97 mm, the 50% braced model was 1.13 mm, the 25% braced model was 1.16 mm and the non-braced model was 24.3 mm, respectively. Compared to the model with the without-braces, the model with 100% of the braces installed has a displacement of 4.0%, the model with 50% of the braces showed a displacement of 4.7%, and the model with 25% of the braces appeared to be a displacement of 4.8%. That is, the installation of the braces is effective in reducing the maximum displacement of the system supports and is effective in reducing the maximum displacement with only small number of braces installed.

A Study on the Buckling Characteristics of Steel Pipe Scaffold (강관비계의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Scaffoling is a temporary frame used to support people and material in the construction or repair of buildings and other large structures. It is usually a modular system of metal pipes, although it can be made out of other materials. Bamboo is still used in some Asian countries like China. The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. In construction site, steel pipes are usually used as scaffolds. In this study, scaffolding systems which is changed according to sleeper and joist space were measured by buckling test. Buckling load of respective scaffolding system was analyzed by structural analysis program(MIDAS). Buckling load of scaffold with/without wall connection and footboard was got by test and structural analysis. According to these results,we know that scaffolding system of case 3 is suitable. Buckling load of scaffold with wall connection is higher than without wall connection. So wall connection is important in scaffoling systems. Footboard in the scaffolding systems is not effective against promotion of buckling load. Finally, the present study results will be used to design scaffolding systems safely in the construction sites.