• 제목/요약/키워드: Little Hankel operator

검색결과 2건 처리시간 0.016초

LITTLE HANKEL OPERATORS ON WEIGHTED BLOCH SPACES IN Cn

  • Choi, Ki-Seong
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.469-479
    • /
    • 2003
  • Let B be the open unit ball in $C^{n}$ and ${\mu}_{q}$(q > -1) the Lebesgue measure such that ${\mu}_{q}$(B) = 1. Let ${L_{a,q}}^2$ be the subspace of ${L^2(B,D{\mu}_q)$ consisting of analytic functions, and let $\overline{{L_{a,q}}^2}$ be the subspace of ${L^2(B,D{\mu}_q)$) consisting of conjugate analytic functions. Let $\bar{P}$ be the orthogonal projection from ${L^2(B,D{\mu}_q)$ into $\overline{{L_{a,q}}^2}$. The little Hankel operator ${h_{\varphi}}^{q}\;:\;{L_{a,q}}^2\;{\rightarrow}\;{\overline}{{L_{a,q}}^2}$ is defined by ${h_{\varphi}}^{q}(\cdot)\;=\;{\bar{P}}({\varphi}{\cdot})$. In this paper, we will find the necessary and sufficient condition that the little Hankel operator ${h_{\varphi}}^{q}$ is bounded(or compact).