• 제목/요약/키워드: Lithium-ions Battery

검색결과 68건 처리시간 0.02초

중성자를 이용한 리튬이온 이차전지 전극 구조분석 (Structure Analysis of Li-ion Battery Using Neutron Beam Source)

  • 김창섭;박헌용;양연화;김지영;성백석;김건
    • 전기화학회지
    • /
    • 제10권1호
    • /
    • pp.20-24
    • /
    • 2007
  • 최근 높은 에너지 밀도를 갖고 있는 리튬 이온 이차전지에 대한 관심이 높다. 리튬 이온 이차전지는 이미 휴대용 기기로 널리 적용되고 있으며, 하이브리드 전기자동차와 같은 고출력 전지시스템에 적용을 위해 연구되고 있다. 리튬 이온 이차전지의 전극 소재는 리튬 이온의 이동에 의해서 충전 및 방전되는 현상을 활용한다. 전극으로부터 리튬 이온이 이동될 때 전극내의 구조 변화가 발생한다. 전극의 구조분석은 중성자 또는 X-선을 이용하여 분석할 수 있다. X-선은 분석 시간이 짧고, 쉽게 분석할 수 있다는 장점이 있으나 원자내의 전자구름과의 산란을 응용하므로 전자가 적은 가벼운 원소의 경우 분석이 어려운 단점이 있다. 리튬도 원자량이 작아서 X-선 만으로는 리튬의 정확한 위치에 대한 분석이 어렵다. 중성자 분석기술은 이에 대한 해답이 될 것이다. 본 자료에서는 중성자를 활용한 전극물질의 구조 분석 사례 및 그 원리에 대해서 논의하고자 한다.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Expansion of Multi-wall Carbon Nanotubes and its Lithium Storage Property

  • Ahn, Jung-Ho;Ahn, Jeong-Seok
    • 한국분말재료학회지
    • /
    • 제24권4호
    • /
    • pp.275-278
    • /
    • 2017
  • In the present work, we apply a technique that has been used for the expansion of graphite to multiwall carbon nanotubes (MWCNT). The nanotubes are rapidly heated for a short duration, followed by immersion in acid solution, so that they undergo expansion. The diameter of the expanded CNTs is 5-10 times larger than that of the as-received nanotubes. This results in considerable swelling of the CNTs and opening of the tube tips, which may facilitate the accessibility of lithium ions into the inner holes and the interstices between the nanotube walls. The Li-ion storage capacity of the expanded nanotubes is measured by using the material as an anode in Li-ion cells. The result show that the discharge capacity of the expanded nanotubes in the first cycle is as high as 2,160 mAh/g, which is about 28% higher than that of the un-treated MWCNT anode. However, the charge/discharge capacity quickly drops in subsequent cycles and finally reaches equilibrium values of ~370 mAh/g. This is possibly due to the destruction of the lattice structures by repeated intercalation of Li ions.

Conduction Mechanism of Charge Carriers in Electrodes and Design Factors for the Improvement of Charge Conduction in Li-ion Batteries

  • Akhtar, Sophia;Lee, Wontae;Kim, Minji;Park, Min-Sik;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.1-20
    • /
    • 2021
  • In-depth knowledge of electrode processes is crucial for determining the electrochemical performance of lithium-ion batteries (LIBs). In particular, the conduction mechanisms of charged species in the electrodes, such as lithium ions (Li+) and electrons, are directly correlated with the performance of the battery because the overall reaction is dependent on the charge transport behavior in the electrodes. Therefore, it is necessary to understand the different electrochemical processes occurring in electrodes in order to elucidate the charge conduction phenomenon. Thus, it is essential to conduct fundamental studies on electrochemical processes to resolve the technical challenges and issues arising during the ionic and electronic conduction. Furthermore, it is also necessary to understand the transport of charged species as well as the predominant factors affecting their transport in electrodes. Based on such in-depth studies, potential approaches can be introduced to enhance the mobility of charged entities, thereby achieving superior battery performances. A clear understanding of the conduction mechanism inside electrodes can help overcome challenges associated with the rapid movement of charged species and provide a practical guideline for the development of advanced materials suitable for high-performance LIBs.

티타늄 산화물과 유화물의 전지 전압을 결정하는 요소에 대한 제일원리계산 (First Principles Study on Factors Determining Battery Voltages of TiS2 and TiO2)

  • 김희진;문원진;김영민;배경서;윤재식;이영미;국진선;김양수
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.8-12
    • /
    • 2009
  • Electronic structures and chemical bonding of Li-intercalated $LiTiS_2$ and $LiTiO_2$ were investigated by using discrete variational $X{\alpha}$ method as a first-principles molecular-orbital method. ${\alpha}-NaFeO_2$ structure is the equilibrium structure for $LiCoO_2$, which is widely used as a commercial cathode material for lithium secondary battery. The study especially focused on the charge state of Li ions and the magnitude of covalency around Li ions. The average voltage of lithium intercalation was calculated using pseudopotential method and the average intercalation voltage of $LiTiO_2$ was higher than that of $LiTiS_2$. It can be explained by the differences in Mulliken charge of lithium and the bond overlap population between the intercalated Li ions and anions in $LiTiO_2$ as well as $LiTiS_2$. The Mulliken charge, which means the ionicity of Li atom, was approximately 0.12 in $LiTiS_2$ and the bond overlap population (BOP) indicating the covalency between Ti and S was about 0.339. One the other hands, the Mulliken charge of lithium was about 0.79, which means that Li is fully ionized. The BOP, the covalency between Ti and O, was 0.181 in $LiTiO_2$. Because of high ionicity of Li and the weak covalency between Ti and the nearest anion, $LiTiO_2$ has a higher intercalation voltage than that of $LiTiS_2$.

PNP 모델을 이용한 리튬이온 배터리 잔존 수명 예측 (Remaining Useful Life of Lithium-Ion Battery Prediction Using the PNP Model)

  • 이정구;박귀만;이은서;진병진;배영철
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1151-1156
    • /
    • 2023
  • 본 논문은 초기 리튬이온 배터리의 충·방전 데이터를 활용하여 리튬이온 배터리의 잔존 수명을 예측할 수 있는 딥러닝 모델을 제시한다. PNP(Positive and Negative Perceptron) 모델을 사용하여 DMP(Deep learning Model using PNP model)를 구축하였으며, DMP의 성능을 증명하기 위해 LSTM 모델을 사용하여 DML(Deep learning Model using LSTM model)을 구성하였다. DMP와 DML의 리튬이온 배터리의 잔존 수명 예측 성능을 비교하며, 오차 측정 방법은 RMSE(Root Mean Square Error)와 RMSPE(Root Mean Square Percentage Error)이다. 시험 데이터로 오차를 측정한 결과 DMP와 DML의 RMSE 차이는 144.62[Cycle]이며, RMSPE 차이는 3.37[%]로 DMP의 오차가 낮게 측정되었다. 이를 통해 우리는 DMP의 성능이 높은 것으로 증명하였으며, 이는 리튬이온 배터리 분야에서 PNP 모델이 LSTM 모델보다 성능이 뛰어남을 나타내었다.

Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries

  • Lee, Jeong Beom;Chae, Oh. B.;Chae, Seulki;Ryu, Ji Heon;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.306-315
    • /
    • 2016
  • Amorphous vanadium titanates (aVTOs) are examined for use as a negative electrode in lithium-ion batteries. These amorphous mixed oxides are synthesized in nanosized particles (<100 nm) and flocculated to form secondary particles. The $V^{5+}$ ions in aVTO are found to occupy tetrahedral sites, whereas the $Ti^{4+}$ ions show fivefold coordination. Both are uniformly dispersed at the atomic scale in the amorphous oxide matrix, which has abundant structural defects. The first reversible capacity of an aVTO electrode ($295mAhg^{-1}$) is larger than that observed for a physically mixed electrode (1:2 $aV_2O_5$ | $aTiO_2$, $245mAhg^{-1}$). The discrepancy seems to be due to the unique four-coordinated $V^{5+}$ ions in aVTO, which either are more electron-accepting or generate more structural defects that serve as $Li^+$ storage sites. Coin-type Li/aVTO cells show a large irreversible capacity in the first cycle. When they are prepared under nitrogen (aVTO-N), the population of surface hydroxyl groups is greatly reduced. These groups irreversibly produce highly resistive inorganic compounds (LiOH and $Li_2O$), leading to increased irreversible capacity and electrode resistance. As a result, the material prepared under nitrogen shows higher Coulombic efficiency and rate capability.

열전지용 용융염 전해질의 유리필터분리판의 담지특성 (The Holding Characteristics of the Glass Filter Separators of Molten Salt Electrolyte for Thermal Batteries)

  • 조광연;류도형;허승헌;신동근;김현이;정해원;조성백
    • 한국세라믹학회지
    • /
    • 제45권8호
    • /
    • pp.464-471
    • /
    • 2008
  • The electrolyte separator for thermal battery should be easily handled and loaded a large amount of the molten salt. Ceramic fibers, especially fibrous commercial glass filters were used as an electrolyte separator and the lithium based molten salts were infiltrated into the ceramic filters. The pore structures of the ceramic filter and the melting properties of the lithium salts affected to the electrolyte loading and leakage. During the infiltration, ions of $Li^+$ and $F^-$ in the molten salts were reacted with the glass fiber and caused to be weaken the fiber strength.

마이크로 박막 전지용 비정질 산화바나듐 박막의 제작 및 전기화학적 특성에 관한 연구 (A Study on The Fabrication and Electrochemical Characterization of Amorphous Vanadium Oxide Thin Films for Thin Film Micro-Battery)

  • 전은정;신영화;남상철;조원일;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.634-637
    • /
    • 1999
  • The amorphous vanadium oxide as a cathode material is very preferable for fabricating high performance micro-battery. The amorphous vanadium oxide cathode is preferred over the crystalline form because three times more lithium ions can be inserted into the amorphous cathode, thus making a battery that has a higher capacity. The electrochemical properties of sputtered films are strongly dependent on the oxygen partial pressure in the sputtering gas. The effect of different oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by r.f. reactive sputtering deposition were investigated. The stoichiometry of the as-deposited films were investigated by Auger electro spectroscopy. X-ray diffraction and atomic force microscopy measurements were carried out to investigate structural properties and surface morphology, respectively. For high oxygen partial pressure(>30% ), the films were polycrystalline V$_2$O$_{5}$ while an amorphous vanadium oxide was obtained at the lower oxygen partial pressure(< 15%). Half-cell tests were conducted to investigate the electrochemical properties of the vanadium oxide film cathode. The cell capacity was about 60 $\mu$ Ah/$\textrm{cm}^2$ m after 200 cycle when oxygen partial pressure was 20%. These results suggested that the capacity of the thin film battery based on vanadium oxide cathode was strongly depends on crystallinity.y.

  • PDF

리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구 (Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water)

  • 진연호;김보람;김대원
    • 청정기술
    • /
    • 제27권1호
    • /
    • pp.33-38
    • /
    • 2021
  • 리튬계 이차전지의 수요는 휴대전화 및 전기자동차 등의 관련 산업의 폭발적인 성장과 더불어 크게 증가하고 있으며, 한국은 전 세계 이차전지 사업의 40%를 점유하는 리튬 이차전지 제조 강국이다. 폐기된 리튬 이차전지의 경우 대부분은 스크랩 형태로 유가금속 회수 차원에서 재활용되고 있으나, 코발트와 니켈 등 유가금속 회수 후 폐액은 잔류 리튬 농도에 따라 일부 폐기되고 있으며, 제조 공정 시 발생하는 폐액에 관한 연구는 전무하다. 뿐만 아니라 리튬 이온 농도에 의한 수계 오염 가능성에 관한 연구는 시도되지 않았으며 해마다 공공하수처리시설의 방류수 수질기준은 엄격해지고 있다. 본 연구에서는 고성능 장시간 목적으로 사용되는 고니켈계 NCM 양극재 제조 공정에서 전극 코팅을 위한 공정에서 발생하는 폐액에 대하여 분석하고, 폐액 처리공정에 대한 과정을 제시하였다. 제안한 제조 공정 폐액 처리 공정별 리튬 이온의 농도 및 pH 영향에 따른 수질오염 척도인 생태독성과의 연관성에 대하여 수질검사와 함께 물벼룩 생태독성 시험을 통해 상관관계를 분석하였다. 또한, 다른 산업군의 생태독성 시험과의 비교를 통해 향후 리튬 공장 폐액에 대한 현실적인 처리 방안에 대하여 서술하였다.