DOI QR코드

DOI QR Code

First Principles Study on Factors Determining Battery Voltages of TiS2 and TiO2

티타늄 산화물과 유화물의 전지 전압을 결정하는 요소에 대한 제일원리계산

  • Kim, H.J. (Korea Basic Science Institute, Suncheon Center) ;
  • Moon, W.J. (Korea Basic Science Institute, Suncheon Center) ;
  • Kim, Y.M. (Korea Basic Science Institute, Suncheon Center) ;
  • Bae, K.S. (Korea Basic Science Institute, Suncheon Center) ;
  • Yoon, J.S. (Korea Basic Science Institute, Suncheon Center) ;
  • Lee, Y.M. (Korea Basic Science Institute, Suncheon Center) ;
  • Gook, J.S. (Dept. of Advanced Materials Eng., Hanlyo University) ;
  • Kim, Y.S. (Korea Basic Science Institute, Suncheon Center)
  • 김희진 (한국기초과학지원연구원 순천센터) ;
  • 문원진 (한국기초과학지원연구원 순천센터) ;
  • 김영민 (한국기초과학지원연구원 순천센터) ;
  • 배경서 (한국기초과학지원연구원 순천센터) ;
  • 윤재식 (한국기초과학지원연구원 순천센터) ;
  • 이영미 (한국기초과학지원연구원 순천센터) ;
  • 국진선 (한려대학교 신소재공학과) ;
  • 김양수 (한국기초과학지원연구원 순천센터)
  • Published : 2009.02.28

Abstract

Electronic structures and chemical bonding of Li-intercalated $LiTiS_2$ and $LiTiO_2$ were investigated by using discrete variational $X{\alpha}$ method as a first-principles molecular-orbital method. ${\alpha}-NaFeO_2$ structure is the equilibrium structure for $LiCoO_2$, which is widely used as a commercial cathode material for lithium secondary battery. The study especially focused on the charge state of Li ions and the magnitude of covalency around Li ions. The average voltage of lithium intercalation was calculated using pseudopotential method and the average intercalation voltage of $LiTiO_2$ was higher than that of $LiTiS_2$. It can be explained by the differences in Mulliken charge of lithium and the bond overlap population between the intercalated Li ions and anions in $LiTiO_2$ as well as $LiTiS_2$. The Mulliken charge, which means the ionicity of Li atom, was approximately 0.12 in $LiTiS_2$ and the bond overlap population (BOP) indicating the covalency between Ti and S was about 0.339. One the other hands, the Mulliken charge of lithium was about 0.79, which means that Li is fully ionized. The BOP, the covalency between Ti and O, was 0.181 in $LiTiO_2$. Because of high ionicity of Li and the weak covalency between Ti and the nearest anion, $LiTiO_2$ has a higher intercalation voltage than that of $LiTiS_2$.

Keywords

References

  1. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull. 15 (1980) 783 https://doi.org/10.1016/0025-5408(80)90012-4
  2. T. Ohzuku and A. Ueda, Solid State Ionics, 69 (1994) 201 https://doi.org/10.1016/0167-2738(94)90410-3
  3. Y. A. Jeon, S. K. Kim, Y. S. Kim, D. H. Won, B. I. Kim, and K. S. No, J. Electrocheramnics, 17 (2006) 667 https://doi.org/10.1007/s10832-006-7674-5
  4. Y. A. Jeon, Y. S. Kim, S. K. Kim, and K. S. No, Solid State Ionics. 117 (2006) 2661
  5. Y. S. Kim, Y. Koyama, I. Tanaka, and H. Adachi, Jpn. J. Appl. Phys. 37 (1998) 6440 https://doi.org/10.1143/JJAP.37.6440
  6. J. V. McCanny, J. Phys. C, 12 (1979) 3263 https://doi.org/10.1088/0022-3719/12/16/014
  7. C. Umrigar, D. E. Ellis, D. S. Wang, H. Krakauer, and M. Posternak, Phys. Rev. B, 26 (1982) 4935 https://doi.org/10.1103/PhysRevB.26.4935
  8. W. C. Mackrodt, J. Solid State Chem., 142 (1999) 428 https://doi.org/10.1006/jssc.1998.8058
  9. L. Benco, J. L. Barras, C. A. Daul, and E. Deiss, Inorg. Chem., 38 (1999) 20 https://doi.org/10.1021/ic9803558
  10. M. V. Koudriachova, V. M. Harrison, and S. W. de. Leeuw, Phys. Rev. Lett., 86 (2001) 1275 https://doi.org/10.1103/PhysRevLett.86.1275
  11. A. Lecerf, Ann. Chim. 7 (1962) 519
  12. G. Shirance, S. J. Pickarty, and R. Newnham, J. Phys. Chem. Solids, 12 (1960) 155
  13. M. V. Koudriachova, S. W. de. Leeuw, and V. M. Harrison, Chem. Phys. Lett., 371 (2003) 150 https://doi.org/10.1016/S0009-2614(03)00156-8
  14. D. W. Murphy, M. Greenblatt, S. M. Zahurak, R. J. Cava, J. V. Waszczak, G. W. Hull, and R. S. Hutton, Rev. Chim. Miner, 19 (1982) 441
  15. D. W. Murphy, R. J. Cava, S. M. Zahurak, and A. Santoro, Solid State Ionics, 9-10 (1983) 413 https://doi.org/10.1016/0167-2738(83)90268-0
  16. G. Kresse and J. Furthmuller, Phys. Rev. B, 54(11), 169 (1996).)
  17. D. E. Ellis, H. Adachi, and F. W. Averill, Surf. Sci., 58 (1976) 491
  18. H. Adachi, M. Tsukada, and C. Satok, J. Phys. Soc. Jpn., 45 (1978) 875 https://doi.org/10.1143/JPSJ.45.875
  19. R. S. Mulliken, J. Chem. Phys., 23 (1955) 1833 https://doi.org/10.1063/1.1740588
  20. M. K. Aydinal, A. F. Kohan, G. Ceder, K. Cho, and J. Joannopoulo, Phys. Rev. B, 56(3) (1997) 1354 https://doi.org/10.1103/PhysRevB.56.1354
  21. J. B. Goodenough, Gerneral Concepts in Lithium Ion Batteries - Fundamentals and Performance, Wiley-VCM, Weinheim (1998)
  22. C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Solid State Chem., 135 (1998) 228 https://doi.org/10.1006/jssc.1997.7629
  23. A. K. Padhi, V. Manivannan, and J. B. Goodenough, J. Electrochem. Soc., 145(5) (1998) 1518 https://doi.org/10.1149/1.1838513