• 제목/요약/키워드: Lithium-Ion batteries

검색결과 761건 처리시간 0.022초

전극구조설계 기반 고에너지밀도·고속충전 리튬이온배터리 제작 (Design of Structured Electrode for High Energy Densified and Fast Chargeable Lithium Ion Batteries)

  • 박수진;배창준
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.406-415
    • /
    • 2018
  • Lithium ion batteries have been widely adopted as energy storage and the LIB global market has grown fastest. However, LIB players have struggled against maximizing energy density since commercial monolithic electrodes are limited by electrolyte depletion caused by long and tortuous Li-ion diffusion pathways. Recently, new strategies designing the structure of battery electrodes strive for creating fast Li-ion path and alleviating electrolyte depletion problem in monolithic electrodes. In this paper, given the fundamental and experimental approaches, we compare the monolithic to structured electrodes and demonstrate the ways to fabricate high energy, fast chargeable Lithium ion battery.

Conversion-Alloying Anode Materials for Na-ion Batteries: Recent Progress, Challenges, and Perspective for the Future

  • Kim, Joo-Hyung;Kim, Do Kyung
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.307-324
    • /
    • 2018
  • Rechargeable lithium-ion batteries (LIBs) have been rapidly expanding from IT based applications to uses in electric vehicles (EVs), smart grids, and energy storage systems (ESSs), all of which require low cost, high energy density and high power density. The increasing demand for LIBs has resulted in increasing price of the lithium source, which is a major obstacle to wider application. To date, the possible depletion of lithium resources has become relevant, giving rise to the interest in Na-ion batteries (NIBs) as promising alternatives to LIBs. A lot of transition metal compounds based on conversion-alloying reaction have been extensively investigated to meet the requirement for the anodes with high energy density and long life-time. In-depth understanding the electrochemical reaction mechanisms for the transition metal compounds makes it promising negative anode for NIBs and provides feasible strategy for low cost and large-scale energy storage system in the near future.

차세대 리튬이온이차전지 연구에서의 원자력 현미경 활용 (Atomic Force Microscopy Applications to the Next Generation Lithium-ion Batteries)

  • 이지현;공상혁;김형우;김형석
    • 세라미스트
    • /
    • 제22권4호
    • /
    • pp.381-392
    • /
    • 2019
  • Recently, demands for lithium-ion batteries (LIB) in various fields are increasing. In particular, understanding of the reaction mechanism occurring at the electrode-electrolyte surface/interface is significant for the development of advanced LIBs. Meanwhile, research and development of LIBs highly requires a new specific characterization approach. For example, atomic force microscopy (AFM) has been utilized to the LIB research field for various purposes such as investigation of topography, electrochemical reactions, ion transport phenomena, and measurement of surface potential at high resolution. Advances in the AFM analysis have made it possible to inspect various material properties such as surface friction and Young's modulus. Therefore, this technique is expected to be a powerful method in the LIB research field. Here, we review and discuss ways to apply AFM to LIB studies.

리튬 2차전지용 전해질 소재의 개발 동향 (Research Trend of Electrolyte Materials for Lithium Rechargeable Batteries)

  • 이영기;김광만
    • 전기화학회지
    • /
    • 제11권4호
    • /
    • pp.242-255
    • /
    • 2008
  • 1991년 lithium-ion battery(LIB)가 상용화된 이후, 초기 전해질은 주로 lithium cobalt oxide($LiCoO_2$) 양극과 graphite 음극의 특성에 집중되어 연구되어 왔다. 또한 전극과 전해질 간의 적합성에 대한 다양한 연구들이 이들 간의 계면에서 활발히 진행되었다. 이후 Si, Sn 등의 비탄소계 음극소재와 3성분(Ni, Mn, Co)계, spinel, olivine 등의 양극 소재를 리튬 2차전지에 채용하려 함에 따라 기존 전해질 재료들도 많은 도전에 직면하게 되었다. 특히, 안전성 문제가 최근 심각하게 부각됨에 따라 전해질의 요구특성은 점점 복잡해지고 까다로워지고 있다. 본 고에서는 이러한 전극소재 변화에 따른 전해질 소재의 다양한 변화와 그 특성에 대하여 구성요소 별로 연구 및 개발 동향을 정리하였다.

리튬이온 배터리 동특성 및 안전성 평가를 위한 배터리 시뮬레이터 시험설비 (Test Facility of Battery Simulator for Dynamic Characteristics and Safety Evaluation in Lithium-ion Battery)

  • 정성인;윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.133-138
    • /
    • 2024
  • 리튬이온 배터리는 높은 에너지 밀도 빠른 충전조건 긴 사이클수명의 특성으로 여러 분야에서 사용되고 있다. 하지만 리튬이온 배터리는 과충전, 과방전, 물리적손상, 고온에서의 사용은 배터리 수명 감소와 보호회로 손상에 의한 화재 및 폭발에 의한 인명피해를 입힐 수 있다. 이러한 배터리의 위험성을 낮추며 배터리 성능을 향상시키기 위해서는 충전 및 방전 과정에서의 특성들을 분석하고 이해하여야 한다. 따라서 본 논문에서는 배터리 충방전기와 시뮬레이터를 활용하여 리튬이온 배터리의 충전 및 방전 특성을 분석하여 과충전 과방전에 따른 배터리 수명 감소와 보호회로 손상에 의한 화재 및 폭발에 의한 인명피해를 줄이고자 한다.

포스트 리튬 이차전지 기술 동향 (Technology Trends in Post-Lithium Secondary Batteries)

  • 최윤호;정형석
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.128-136
    • /
    • 2023
  • Lithium accounts for only 0.0017% of the earth crust, and it is produced in geographically limited regions such as South America, the United States, and China. Since the first half of 2017, the price of lithium has been continuously increasing, and with the rapid adoption of electric vehicles, lithium resources are expected to be depleted in the near future. In addition, economic blocs worldwide face intensifying scenarios such as competition for technological supremacy and protectionism of domestic industries. Consequently, Korea is deepening its dependence on China for core materials and is vulnerable to the influence of the United States Inflation Reduction Act. We analyze post-lithium secondary battery technologies that rely on more earth-abundant elements to replace lithium, whose production is limited to specific regions. Specifically, we focus on the technological status and issues of sodium-ion, zinc-air, and redox-flow batteries. In addition, research trends in post-lithium secondary batteries are examined. Post-lithium secondary batteries seem promising for large-capacity energy storage systems while reducing the costs of raw materials compared with existing lithium-based technologies.

NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화 ( Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials )

  • 유진욱;표성규
    • 한국표면공학회지
    • /
    • 제57권2호
    • /
    • pp.57-70
    • /
    • 2024
  • Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.

PNP 모델을 이용한 리튬이온 배터리 잔존 수명 예측 (Remaining Useful Life of Lithium-Ion Battery Prediction Using the PNP Model)

  • 이정구;박귀만;이은서;진병진;배영철
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1151-1156
    • /
    • 2023
  • 본 논문은 초기 리튬이온 배터리의 충·방전 데이터를 활용하여 리튬이온 배터리의 잔존 수명을 예측할 수 있는 딥러닝 모델을 제시한다. PNP(Positive and Negative Perceptron) 모델을 사용하여 DMP(Deep learning Model using PNP model)를 구축하였으며, DMP의 성능을 증명하기 위해 LSTM 모델을 사용하여 DML(Deep learning Model using LSTM model)을 구성하였다. DMP와 DML의 리튬이온 배터리의 잔존 수명 예측 성능을 비교하며, 오차 측정 방법은 RMSE(Root Mean Square Error)와 RMSPE(Root Mean Square Percentage Error)이다. 시험 데이터로 오차를 측정한 결과 DMP와 DML의 RMSE 차이는 144.62[Cycle]이며, RMSPE 차이는 3.37[%]로 DMP의 오차가 낮게 측정되었다. 이를 통해 우리는 DMP의 성능이 높은 것으로 증명하였으며, 이는 리튬이온 배터리 분야에서 PNP 모델이 LSTM 모델보다 성능이 뛰어남을 나타내었다.

Enhancement of high temperature cycling stability in high-nickel cathode materials with titanium doping

  • Song, Jun-Ho;Bae, Joongho;Lee, Ko-woon;Lee, Ilbok;Hwang, Keebum;Cho, Woosuk;Hahn, Sang June;Yoon, Songhun
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.124-128
    • /
    • 2018
  • Titanium doping is employed to enhance the structural strength of a high-Ni layered cathode material in lithium ion batteries during high temperature cycling. After Ti-doping, the external morphology remains similar, but the lattice parameters of the layered structure are slightly shifted toward larger values. With application of the prepared materials as cathodes in lithium-ion batteries, the initial capacities are similar but the cycling performance at $25^{\circ}C$ is enhanced by Ti-doping. During high temperature cycling at $60^{\circ}C$, furthermore, highly improved capacity retention is achieved with the Ti-doped material (95% of initial capacity at 50th cycles), while cycle fading is accelerated with the bare electrode. This enhancement is attributed to better retention of the compressive strength of the particles and retarded crack formation within the particles. In addition, impedance increase is reduced in the Ti-doped electrode, which is attributed to an improvement in the structural strength of the high-Ni cathode material with Ti-doping.

리튬전지용 에테르가 기능화된 이온성 액체 기반 이온성 액정 전해질의 전기화학적 특성 (Ionic Liquid Crystal Electrolytes based on Ether Functionalized Ionic Liquid for Lithium Batteries)

  • 김일진;김기수;이진홍
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.305-309
    • /
    • 2020
  • 본 연구에서는 에테르가 기능화된 이온성 액체인 [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite)와 리튬염인 LiTf2N (lithium bis(trifluoromethanesulfonyl)imide)을 혼합하였고, 리튬염의 함량을 조절하여 전해질을 특성을 조사하였다. 제조된 전해질은 리튬염 혼합에 따라 불투명해지고 흐름성이 제한된 열방성 액정을 형성하였으며, 이때 리튬염의 함량에 따라 형성되는 이온성 액정의 자기조립구조와 이온 전도 현상을 다양한 분광학적 분석을 통해 조사하였다. 그 결과 이온성 액정의 향상된 이온전도도는 정렬된 구조를 통한 이온 전도 특성과 관계가 있음을 확인하였으며, 리튬이온전지 특성 평가에서 우수한 전기화학적 특성을 나타냄을 확인하였다.