DOI QR코드

DOI QR Code

Atomic Force Microscopy Applications to the Next Generation Lithium-ion Batteries

차세대 리튬이온이차전지 연구에서의 원자력 현미경 활용

  • Received : 2019.12.11
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

Recently, demands for lithium-ion batteries (LIB) in various fields are increasing. In particular, understanding of the reaction mechanism occurring at the electrode-electrolyte surface/interface is significant for the development of advanced LIBs. Meanwhile, research and development of LIBs highly requires a new specific characterization approach. For example, atomic force microscopy (AFM) has been utilized to the LIB research field for various purposes such as investigation of topography, electrochemical reactions, ion transport phenomena, and measurement of surface potential at high resolution. Advances in the AFM analysis have made it possible to inspect various material properties such as surface friction and Young's modulus. Therefore, this technique is expected to be a powerful method in the LIB research field. Here, we review and discuss ways to apply AFM to LIB studies.

Keywords

References

  1. K.I. Ozoemena, Shaowei Chen, "Nanomaterials in Advanced Batteries and Supercapacitors", Springer, (2016)
  2. C. Curry, "Lithium ion battery costs and market", Bloomberg New Energy Finance," (2017).
  3. Y.J. Yang, X.Z. Liu, Z.H. Dai, F.L. Yuan, Y. Bando, D. Golberg, X. Wang, "In Situ electrochemistry of rechargeable battery materials: status report and perspectives," Adv. Mater 29 22 (2017).
  4. J.M. Tarascon, M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature 414 359-367 (2001) https://doi.org/10.1038/35104644
  5. Y.-Z. Su, Y.-C. Fu, Y.-M. Wei, J.-W. Yan, B.-W. Mao, "The electrode/ionic liquid interface: electric double layer and metal electrodeposition," ChemPhys Chem 11 2764-2778 (2010). https://doi.org/10.1002/cphc.201000278
  6. Z. Zhu, X. Chen, "Artificial interphase engineering of electrode materials to improve the overall performance of lithium-ion batteries," Nano Res. 10 4115-4138 (2017). https://doi.org/10.1007/s12274-017-1647-7
  7. L. Danis, S.M. Gateman, C. Kuss, S.B. Schougaard, J. Mauzeroll, "Nanoscale measurements of Lithium-ion-battery materials using scanning probe techniques," ChemElectroChem 4 6-19 (2017). https://doi.org/10.1002/celc.201600571
  8. S. Yang, J.X. Wu, B.G. Yan, L. Li, Y. Sun, L. Lu, K. Zeng, "Nanoscale characterization of charged/discharged lithium-rich thin film cathode by scanning probe microscopy techniques," J. Power Sources 352 9-17(2017). https://doi.org/10.1016/j.jpowsour.2017.03.082
  9. H.J. Butt, B. Cappella, M. Kappl, "Force measurements with the atomic force microscope: technique, interpretation, and applications," Surf. Sci. Rep 59 1-152 (2003). https://doi.org/10.1016/j.surfrep.2005.08.003
  10. J.V. Macpherson, P.R. Unwin, "Combined scanning electrochemical-atomic force microscopy," Anal. Chem. 72 276-285(2000). https://doi.org/10.1021/ac990921w
  11. A.M. Tripathi, W.N. Su, B.J. Hwang, "In situ analytical techniques for battery interface analysis," Chem. Soc. Rev 47 736-851 (2018). https://doi.org/10.1039/c7cs00180k
  12. F. Dinkelacker, P. Marzak, J. Yun, Y. Liang, A.S. Bandarenka, "A Multistage Mechanism of Lithium Intercalation into Graphite Anodes in Presence of the Solid Electrolyte Interface," ACS Appl. Mater. Interfaces (2018).
  13. T. Minato, T. Abe, "Surface and interface sciences of Li-ion batteries-Research progress in electrode electrolyte interface," Prog. Surf. Sci 92 240-280 (2017). https://doi.org/10.1016/j.progsurf.2017.10.001
  14. R. Guo, W. Yue, Y. Ren, W. Zhou, "Hierarchical structured graphene/metal oxide porous carbon composites as anode materials for lithium-ion batteries," Mater. Res. Bull 73 102-110(2016). https://doi.org/10.1016/j.materresbull.2015.08.027
  15. S.J. An, J.L. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, "The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling," Carbon 105 52-76(2017). https://doi.org/10.1016/j.carbon.2016.04.008
  16. K.A. Hirasawa, K. Nishioka, T. Sato, S. Yamaguchi, S. Mori, "Investigation of graphite composite anode surfaces by atomic force microscopy and related techniques," J. Power Sources 69 97-102(1997). https://doi.org/10.1016/S0378-7753(97)02578-0
  17. S. Huang, L.-Z. Cheong, S. Wang, D. Wang, C. Shen, "In-situ study of surface structure evolution of silicon anodes by electrochemical atomic force microscopy," Appl. Surface Sci. 452 67-74(2018). https://doi.org/10.1016/j.apsusc.2018.05.020
  18. S.Y. Lang, Y. Shi, Y.G. Guo, D. Wang, R. Wen, L.J. Wan, "Insight into the interfacial process and mechanism in lithium-sulfur batteries: an In Situ AFM study," Angew. Chem.-Int. Edit 55 15835-15839(2016). https://doi.org/10.1002/anie.201608730
  19. R. Wen, M. Hong, H.R. Byon, "In Situ AFM imaging of Li-$O_2$ electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte," J. Am. Chem. Soc. 135 10870-10876(2013). https://doi.org/10.1021/ja405188g
  20. R. Wen, H.R. Byon, "In situ monitoring of the Li-$O_2$ electrochemical reaction on nanoporous gold using electrochemical AFM," Chem. Commun 50 (2014) 2628-2631. https://doi.org/10.1039/c3cc49625b
  21. S.C. Nagpure, B. Bhushan, S.S. Babu, "Surface potential measurement of aged Li-ion batteries using Kelvin probe microscopy," J. Power Sources 196 1508-1512(2011). https://doi.org/10.1016/j.jpowsour.2010.08.031
  22. S.Y. Luchkin, H.Y. Amanieu, D. Rosato, A.L. Kholkin, "Li distribution in graphite anodes: a Kelvin Probe Force Microscopy approach," J. Power Sources 268 887-894(2014). https://doi.org/10.1016/j.jpowsour.2014.06.143
  23. J.X. Wu, S. Yang, W. Cai, Z.F. Bi, G.Y. Shang, J.N. Yao, "Multi-characterization of $LiCoO_2$ cathode films using advanced AFM-based techniques with high resolution," Sci Rep 7 9(2017). https://doi.org/10.1038/s41598-017-00053-7
  24. K.Q. Zhou, M.L. Kang, X.Q. He, Z.S. Hong, Z.G. Huang, M.D. Wei, "A multi-functional gum arabic binder for $NiFe_2O_4$ nanotube anodes enabling excellent Li/Na ion storage performance," J. Mater. Chem. A 5 18138-18147(2017). https://doi.org/10.1039/C7TA05219G
  25. S.D. Lacey, J. Wan, A.v.W. Cresce, S.M. Russell, J. Dai, W. Bao, K. Xu, L. Hu, "Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion Anodes", Nano Lett. 15 1018-1024 (2015). https://doi.org/10.1021/nl503871s
  26. J. Zhang, R. Wang, X.C. Yang, W. Lu, X.D. Wu, X.P. Wang, H. Li, L.W. Chen, "Direct Observation of Inhomogeneous Solid Electrolyte Interphase on MnO Anode with Atomic Force Microscopy and Spectroscopy", Nano Lett 12 2153-2157 (2012). https://doi.org/10.1021/nl300570d
  27. Y. Gu, W.W. Wang, Y.J. Li, Q.H. Wu, S. Tang, J.W. Yan, M.S. Zheng, D.Y. Wu, C.H. Fan, W.Q. Hu, Z.B. Chen, Y. Fang, Q.H. Zhang, Q.F. Dong, B.W. Mao, "Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes", Nat. Commun 9 9 (2018). https://doi.org/10.1038/s41467-017-01881-x
  28. C. Shen, G. Hu, L.-Z. Cheong, S. Huang, J.-G. Zhang, D. Wang, "Direct observation of the growth of lithium dendrites on graphite anodes by operando EC-AFM", Small Methods 2 1700298 (2017). https://doi.org/10.1002/smtd.201700298
  29. J.H. Chen, H.J. Hu, S. Li, Y.L. He, "Evolution of mechanical properties of polypropylene separator in liquid electrolytes for lithium-ion batteries", J. Appl. Polym. Sci. 135 11 (2018).
  30. S.Q. Huang, L.Z. Cheong, S.W. Wang, D.Y. Wang, C. Shen, "In-situ study of surface structure evolution of silicon anodes by electrochemical atomic force microscopy", Appl. Surf. Sci 452 67-74 (2018). https://doi.org/10.1016/j.apsusc.2018.05.020
  31. J. Zhang, X.C. Yang, R. Wang, W.L. Dong, W. Lu, X.D. Wu, X.P. Wang, H. Li, L.W. Chen, "Influences of additives on the formation of a solid electrolyte interphase on mno electrode studied by atomic force microscopy and force spectroscopy", J. Phys. Chem. C 118 20756-20762 (2014). https://doi.org/10.1021/jp503953n
  32. A.J. Bard, G. Denuault, C. Lee, D. Mandler, D.O. Wipf, "Scanning electrochemical microscopy - a new technique for the characterization and modification of surfaces", Accounts Chem. Res 23 357-363 (1990). https://doi.org/10.1021/ar00179a002
  33. J. Kwak, A.J. Bard, "Scanning electrochemical microscopy - theory of the feedback mode", Anal. Chem 61 1221-1227 (1989). https://doi.org/10.1021/ac00186a009
  34. F.O. Laforge, J. Velmurugan, Y.X. Wang, M.V. Mirkin, "Nanoscale imaging of surface topography and reactivity with the scanning electrochemical microscope", Anal. Chem 81 3143-3150 (2009). https://doi.org/10.1021/ac900335c
  35. G. Zampardi, R. Trocoli, W. Schuhmann, F. La Mantia, "Revealing the electronic character of the positive electrode/electrolyte interface in lithium-ion batteries", Phys. Chem. Chem. Phys 19 28381-28387 (2017). https://doi.org/10.1039/C7CP05453J
  36. H. Bulter, F. Peters, G. Wittstock, "Scanning Electrochemical microscopy for the insitu characterization of solid-electrolyte interphases: highly oriented pyrolyticMgraphite versus graphite composite", Energy Technol 4 1486-1494 (2016). https://doi.org/10.1002/ente.201600071
  37. J. Hui, M. Burgess, J. Zhang, J. Rodriguez-Lopez, "Layer number dependence of Li+ intercalation on few-layer graphene and electrochemical imaging of its solid--electrolyte interphase evolution", ACS Nano 10 4248-4257 (2016). https://doi.org/10.1021/acsnano.5b07692
  38. H. Bulter, F. Peters, J. Schwenzel, G. Wittstock, "Spatiotemporal changes of thesolid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy", Angew. Chem.-Int. Edit 53 10531-10535 (2014). https://doi.org/10.1002/anie.201403935
  39. P. Schwager, D. Fenske, G. Wittstock, "Scanning electrochemical microscopy of oxygen permeation through air-electrodes in lithium-air batteries", J. Electroanal. Chem. 740 82-87 (2015). https://doi.org/10.1016/j.jelechem.2014.12.040
  40. Z.J. Barton, J. Rodriguez-Lopez, "Lithium ion quantification using mercury amalgams as in situ electrochemical probes in nonaqueous media", Anal. Chem 86 10660-10667(2014). https://doi.org/10.1021/ac502517b
  41. E. Ventosa, E. Madej, G. Zampardi, B. Mei, P. Weide, H. Antoni, F. La Mantia, M. Muhler, W. Schuhmann, "Solid Electrolyte Interphase (SEI) at $TiO_2$ Electrodes in Li-Ion Batteries: defining Apparent and Effective SEI Based on Evidence from X-ray Photoemission Spectroscopy and Scanning Electrochemical Microscopy", Acs Appl. Mater. Interfaces 9 3123-3130 (2017). https://doi.org/10.1021/acsami.6b13306
  42. R.T. Yan, J. Ghilane, K.C. Phuah, T.N.P. Truong, S. Adams, H. Randriamahazaka, Q. Wang, "Determining $Li^+$-coupled redox targeting reaction kinetics of battery materials with scanning electrochemical microscopy", J. Phys. Chem. Lett. 9 491-496 (2018). https://doi.org/10.1021/acs.jpclett.7b03136
  43. Y. Takahashi, A. Kumatani, H. Munakata, H. Inomata, K. Ito, K. Ino, H. Shiku, P.R. Unwin, Y.E. Korchev, K. Kanamura, T. Matsue, "Nanoscale visualization of redox activity at lithium-ion battery cathodes", Nat. Commun. 5 7 (2014).
  44. T.M. McEvoy, K.J. Stevenson, "Spatially Resolved Imaging of Inhomogeneous Charge Transfer Behavior in Polymorphous Molybdenum Oxide. I. Correlation of Localized Structural, Electronic, and Chemical Properties Using Conductive Probe Atomic Force Microscopy and Raman Microprobe Spectroscopy", Langmuir 21 3521-3528 (2005). https://doi.org/10.1021/la047276v
  45. H.Y. Song, S.K. Jeong, "Electrochemical solvent cointercalation into graphite in propylene carbonate-based electrolytes: a chronopotentiometric characterization", J. Anal. Methods Chem 5 (2018).
  46. K. Ozawa, "Lithium Ion Rechargeable Batteries: Materials, Technology, and New Applications", Wiley-VCH Verlag GmbH & Co, KGaA, (2010).
  47. A.J.J. Jebaraj, D.A. Scherson, "Microparticle Electrodes and Single Particle Microbatteries: electrochemical and in Situ MicroRaman Spectroscopic Studies", Accounts Chem. Res 46 1192-1205 (2013). https://doi.org/10.1021/ar300210q
  48. G. Goubert, X. Chen, S. Jiang, R.P. Van Duyne, "In Situ Electrochemical Tip-Enhanced Raman Spectroscopy with a Chemically Modified Tip", J. Phys. Chem. Lett. 9 3825-3828 (2018). https://doi.org/10.1021/acs.jpclett.8b01635