• Title/Summary/Keyword: Lithium primary batteries

Search Result 25, Processing Time 0.023 seconds

Technology Trends for Lithium Secondary Batteries (리튬 이차전지 기술 동향)

  • Y.H. Choi;H.S. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.90-99
    • /
    • 2023
  • Recently, with the trend of information technology convergence and electrification, batteries are being widely used in fields such as industry, transportation, and specific applications. By 2030, the secondary battery market is expected to grow explosively by more than eight times compared with 2020 to $351.7 billion owing to the expanding adoption of electric vehicles. Depending on the electrochemical reactions in the electrode, a primary battery can only discharge through an irreversible reaction, while a secondary battery can be repeatedly charged and discharged using reversible reactions. According to the type of charge carrier ions, secondary batteries may be classified into those made of lithium, sodium, potassium, magnesium, and aluminum ions. We analyze the current status and technological issues of lithium-ion batteries, lithium-sulfur batteries, and solid-state batteries, which are representative examples of lithium secondary batteries. In addition, research trends in lithium secondary batteries are discussed.

Optimum Conditions of Dismantlement for Recovery of Valuables from Spent Lithium Primary Batteries (폐일차리튬전지로부터 유가금속을 회수하기 위한 해체공정의 최적화)

  • Yoo, Koungkeun;Kim, Hong-in;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.51-58
    • /
    • 2019
  • Dismantlement of lithium primary batteries without explosion is required to recycle the lithium primary batteries which could be exploded by heating too much or crushing. In the present study, the optimum discharging condition was investigated to dismantle the batteries without explosion. When the batteries were discharged with $0.5kmol{\cdot}m^{-3}$ sulfuric acid, the reactivity of the batteries decreased after 4 days at $35^{\circ}C$ and after 1 day at $50^{\circ}C$, respectively. This result shows that higher temperature removed the high reactivity of the batteries. Because loss of metals recycled increases when the batteries are discharged only with the sulfuric acid, discharging process using acid solution and water was newly proposed. When the batteries were discharged with water during 24 hours after discharging with $0.5kmol{\cdot}m^{-3}$ sulfuric acid during 6 hours, the batteries discharged were dismantled without explosion. Because decrease in loss of metals was accomplished by new process, the recycling process of the batteries could become economic by the 2-step discharging process.

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents

  • Song, Hee-Youb;Jung, Moon-Hyung;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.430-436
    • /
    • 2020
  • Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.

Lithium/Sulfur Secondary Batteries: A Review

  • Zhao, Xiaohui;Cheruvally, Gouri;Kim, Changhyeon;Cho, Kwon-Koo;Ahn, Hyo-Jun;Kim, Ki-Won;Ahn, Jou-Hyeon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.97-114
    • /
    • 2016
  • Lithium batteries based on elemental sulfur as the cathode-active material capture great attraction due to the high theoretical capacity, easy availability, low cost and non-toxicity of sulfur. Although lithium/sulfur (Li/S) primary cells were known much earlier, the interest in developing Li/S secondary batteries that can deliver high energy and high power was actively pursued since early 1990’s. A lot of technical challenges including the low conductivity of sulfur, dissolution of sulfur-reduction products in the electrolyte leading to their migration away from the cathode, and deposition of solid reaction products on cathode matrix had to be tackled to realize a high and stable performance from rechargeable Li/S cells. This article presents briefly an overview of the studies pertaining to the different aspects of Li/S batteries including those that deal with the sulfur electrode, electrolytes, lithium anode and configuration of the batteries.

Safety Improvement of Military Primary Lithium Batteries by New Protection Circuit for Low Current System (신규 보호회로 적용을 통한 저전류 장비용 군 리튬전지 안전성 개선)

  • Youn, Seong Gi;Cho, Yu Seup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.256-261
    • /
    • 2019
  • The use of military lithium batteries in this field accelerates the generation of internal pressure because the active materials, lithium and the electrolyte, react to form sulfur dioxide gas. This also reduces the amount of electrolyte. In this condition, batteries can 'vent' or 'explode' especially when completely discharged. Such venting and explosion can be regarded as a safety accident, as toxic gases and shrapnel are ejected from the batteries which can harm the user. A DTaQ was carried out in 2017 as a quality problem solution project to solve this safety issue. A protection circuit was thereby developed, which included a micro controller unit (MCU) which can stop battery usage when in an over-discharging state by sensing its low-voltage condition. In 2018, this concept was expanded to lithium batteries for the remote controlled ammunition system. This paper reports results of the improved performance.

Fabrication and Electrochemical Characterization of Carbon Fluoride-based Lithium-Ion Primary Batteries with Improved Rate Performance Using Oxygen Plasma (산소 플라즈마를 이용하여 율속 성능이 개선된 불화탄소 기반 리튬 일차전지의 제조 및 전기 화학적 특성)

  • Seoyeong Cheon;Naeun Ha;Chaehun Lim;Seongjae Myeong;In Woo Lee;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.534-540
    • /
    • 2023
  • The high-rate performance is limited by several factors, such as polarization generation, low electrical conductivity, low surface energy, and low electrolyte permeability of CFX, which is widely used as a cathode active material in the lithium primary battery. Therefore, in this study, we aimed to improve the battery performance by using carbon fluoride modified by surface treatment using oxygen plasma as a cathode for lithium primary batteries. Through XPS and XRD analysis, changes in the surface chemical characteristics and crystal structure of CFX modified by oxygen plasma treatment were analyzed, and accordingly, the electrochemical characteristics of lithium-ion primary batteries were analyzed and discussed. As a result, the highest number of semi-ionic C-F bonds were formed under the oxygen plasma treatment condition (7.5 minutes) with the lowest fluorine to carbon (F/C) ratio. In addition, the primary cell prepared under this condition using carbon fluoride as the active material of the cathode showed the highest 3 F/C(3 C rate-performance) rate-performance and maintained a relatively high capacity (550 mAh/g) even at high rates. In this study, it was possible to produce lithium primary batteries with high-rate performance by adjusting the fluorine contents of carbon fluoride and the type of carbon-fluorine bonding through oxygen plasma treatment.

Dismantlement of Spent Lithium Primary Batteries for Recycling (폐(廢)리튬일차전지(一次電池)의 안정적(安定的) 해체(解體)를 위한 연구(硏究))

  • Yoo, Kyoung-Keun;Kim, Myoung-Hwa;Shin, Shun-Myung;Yang, Dong-Hyo;Kang, Jin-Gu;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.3-9
    • /
    • 2007
  • Dismantlement of lithium primary batteries without explosion is required to recycle the lithium primary batteries which could be exploded by heating too much or crushing. In the present study, the optimum discharging condition was investigated to dismantle the batteries without explosion. When the batteries were discharged with $0.5kmol{\cdot}m^{-3}$ sulfuric acid, the batteries became inert after 4 days at $35^{\circ}C$ and after 1 day at $50^{\circ}C$, respectively. This result shows that higher temperature accelerates inert of the batteries. Because loss of metals recycled increases when the batteries are discharged only with the sulfuric acid, discharging process using acid solution and water was newly proposed. When the batteries were discharged with water during 24 hours after discharging with $0.5kmol{\cdot}m^{-3}$ sulfuric acid during 6 hours, the batteries discharged were dismantled without explosion. Because decrease in loss of metals was accomplished by new process, the recycling process of the batteries could become economic by the 2-step discharging process.

Electrical Characteristics According to the Manufacturing Process of the Flexible Li/MnO2 Primary Cell (플렉서블 Li/MnO2 일차전지의 제조공정에 따른 전기적 특성)

  • Lee, Mi-Jai;Chae, Yoo-Jin;Kim, Jin-Ho;Hwang, Jong-Hee;Park, Sang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.717-721
    • /
    • 2012
  • Manganese dioxide ($MnO_2$) is one of the most important cathode materials used in both aqueous and non-aqueous batteries. The $MnO_2$ polymorph that is used for lithium primary batteries is synthesized either by electrolytic (EMD-$MnO_2$) or chemical methods (CMD-$MnO_2$). Commonly, electrolytic manganese dioxide (EMD) is used as a cathode mixture material for dry-cell batteries, such as a alkaline batteries, zinc-carbon batteries, rechargeable alkaline batteries, etc. The characteristics of lithium/manganese-dioxide primary cells fabricated with EMD-$MnO_2$ powders as cathode were compared as a function of the parameters of a manufacturing process. The flexible primary cells were prepared with EMD-$MnO_2$, active carbon, and poly vinylidene fluoride (PVDF) binder (10 wt.%) coated on an Al foil substrate. A cathode sheet with micro-porous showed a higher discharge capacity than a cathode sheet compacted by a press process. As the amount of EMD-$MnO_2$ increased, the electrical conductivity decreased and the electrical capacity increased. The cell subjected to heat-treatment at $200^{\circ}C$ for 1 hr showed a high discharge capacity. The flexible primary cell made using the optimum conditions showed a capacity and an average voltage of 220 mAh/g and 2.8 V, respectively, at $437.5{\mu}A$.

A Study on the Development of Nanorod-Type Ni-Rich Cathode Materials by Using Co-Precipitation Method (공침법을 통한 나노로드 형태의 니켈계 양극 소재 개발에 관한 연구)

  • Joohyuk Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.215-222
    • /
    • 2024
  • Ni-rich cathode materials have been developed as the most promising candidates for next-generation cathode materials for lithium-ion batteries because of their high capacity and energy density. In particular, the electrochemical performance of lithium-ion batteries could be enhanced by increasing the contents of nickel ion. However, there are still limitations, such as low structural stability, cation mixing, low capacity retention and poor rate capability. Herein, we have successfully developed the nanorod-type Ni-rich cathode materials by using co-precipitation method. Particularly, the nanorod-type primary particles of LiNi0.7Co0.15Mn0.15O2 could facilitate the electron transfer because of their longitudinal morphology. Moreover, there were holes at the center of secondary particles, resulting in high permeability of the electrolyte. Lithium-ion batteries using the prepared nanorod-type LiNi0.7Co0.15Mn0.15O2 achieved highly improved electrochemical performance with a superior rate capability during battery cycling.

Electrochemical Characteristics of CFX Based Lithium Primary Batteries Produced by Carbon Fiber Reinforced Plastic -Derived Waste Carbon Fibers (탄소섬유강화플라스틱 유래 폐 탄소섬유로 제조된 불화탄소 기반 리튬일차전지의 전기화학적 특성)

  • Naeun Ha;Chaehun Lim;Seongmin Ha;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.515-521
    • /
    • 2023
  • In this study, waste carbon fiber obtained by pyrolysis of carbon fiber reinforced plastic (CFRP) was used to produce carbon fluoride through vapor phase fluorination and recycled as a reducing electrode material for lithium primary batteries. First, the physicochemical properties of the waste carbon fiber obtained by pyrolysis were determined, and the structural and chemical properties of carbon fluoride were analyzed to evaluate the effect of vapor phase fluorination on the waste carbon fiber. XRD analysis confirmed that the hexagonal network carbon laminated structure (002 peak) of the waste carbon fiber was gradually converted into a carbon fluoride structure (CFX, 001 peak) as the temperature of gas phase fluorination increased. The discharge capacity of the lithium primary battery produced using this carbon fluoride was up to 862 mAh/g. This was compared to the discharge capacity of carbon fluoride-based Li-ion batteries made of other carbon materials. These results suggest that carbon fluoride made from waste CFRP-based carbon fibers can be used as a reducing electrode material for Li-ion batteries.