• Title/Summary/Keyword: Lithium ions

Search Result 168, Processing Time 0.029 seconds

Thermodynamic Control in Competitive Anchoring of N719 Sensitizer on Nanocrystalline $TiO_2$ for Improving Photoinduced Electrons

  • Lim, Jong-Chul;Kwon, Young-Soo;Song, In-Young;Park, Sung-Hae;Park, Tai-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.68-69
    • /
    • 2011
  • The process of charge transfer at the interface between two semiconductors or between a metal and a semiconductor plays an important role in many areas of technology. The optimization of such devices requires a good theoretical description of the interfaces involved. This, in turn, has motivated detailed mechanistic studies of interfacial charge-transfer reactions at metal/organic, organic/organic, and organic/inorganic semiconductor heterojunctions. Charge recombination of photo-induced electron with redox species such as oxidized dyes or triiodide or cationic HTM (hole transporting materials) at the heterogeneous interface of $TiO_2$ is one of main loss factors in liquid junction DSSCs or solid-state DSSCs, respectively. Among the attempts to prevent recombination reactions such as insulating thin layer and lithium ions-doped hole transport materials and introduction of co-adsorbents, although co-adsorbents retard the recombination reactions as hydrophobic energy barriers, little attention has been focused on the anchoring processes. Molecular engineering of heterogeneous interfaces by employing several co-adsorbents with different properties altered the surface properties of $TiO_2$ electrodes, resulting to the improved power conversion efficiency and long-term stability of the DSSCs. In this talk, advantages of the coadsorbent-assisted sensitization of N719 in preparation of DSSCs will be discussed.

  • PDF

Characterization of Glycine Metal Salts for $CO_2$ Absorption (이산화탄소 흡수를 위한 글리신 금속염의 특성 연구)

  • Lim, Yun-Hui;Park, Young Koo;Jo, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.284-288
    • /
    • 2012
  • This work deals with the chemical characterization of glycine aqueous solution in $CO_2$ absorption. Three alkali elements were impregnated into the glycine in order to facilitate the formation of amino functionalities. The analysis by IR revealed the transformation of ammonium ions to the amino group. In addition, the NMR analysis showed that the substitution of metal cations to the chemical shift of hydrogen and carbon atoms in glycine; in order of lithium glycinate, sodium glycinate and potassium glycinate depending on the electro negativity. Meanwhile, the $CO_2$ absorption at room temperature was the highest in primary amine solution, but at the increasing temperature sodium glycinate could capture more $CO_2$ than that of the pure amine solution.

Anisotropic Hyperfine Structures of Nd3+ and Er3+ in VTE-Treated Ferroelectric LiNbO3 Crystals (VTE 처리된 강유전 LiNbO3 단결정 내의 Nd3+와 Er3+ 초미세 구조의 비등방성)

  • Park, I.W.;Choh, S.H.;Kim, Y.M.;Chon, U.;Kim, S.S.;Kim, W.J.;Kim, B.G.;Sohn, J.M.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.118-124
    • /
    • 2005
  • We have obtained sharp and clearly resolved ESR spectra of $Nd^{3+}$ and $Er^{3+}$ in vapor transport equilibrium (VTE) treated $LiNbO_3$ crystals, consequently have determined more accurate spin Hamiltonian parameters, than those in congruent samples. The anisotropic hyperfine structures of $^{143}Nd^{3+}$ and $^{145}Nd^{3+}$ in the VTE-treated crystals at liquid helium temperature have been analyzed. It is proposed that both rare earth ions favor the lithium site in $LiNbO_3$ from the consideration of the determined anisotropic g-values.

Characterization of ion-conductive Behaviors for Crystalline/Amorphous Solid Polyether Electrolytes Using Supercritical $CO_2$ Fluid (초임계 이산화탄소 유체를 이용한 결정성/무정형 폴리에테르 전해질의 이온전도특성 연구)

  • ;Y. Tominaga;S. Asai;M. Sumita
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.785-791
    • /
    • 2002
  • The effect of the supercritical carbon dioxide (sc$CO_2$) on ion-conductive behaviors for polyether electrolytes based on, both poly (ethylene oxide) (PEO) and poly [oligo (oxyethylene glycol) methacrylate] (PMEO) with lithium triflate, LiCF$_3$SO$_3$, has been investigated. In particular, the present research is a new concept for improving the ionic conductivity of polyether electrolytes. The maximum ionic conductivity ($\sigma$$_{max}$) at room temperature of the PEO electrolyte was more than 100 times higher, and the $\sigma$$_{max}$ at 9$0^{\circ}C$ of the PMEO electrolyte was 30 times improved by the se$CO_2$ treatment, respectively. It was revealed that the penetration of $CO_2$ molecules into the polymer matrix causes the increase of carrier ions by ion-dispersion effect and the decrease of glass transition temperature (T$_{g}$) by plasticizing effect that results in the improvement of the ion transport behaviors.viors.

Effect of Fiber Orientation on Ionic Conductivity of Electrospun Polyimide Nanofibers Mats (전기방사 폴리이미드 나노섬유매트의 섬유배향이 이온전도도에 미치는 영향)

  • Huh, Yang-Il;Kim, Young-Hee;Ahn, Jou-Hyeon;Lee, Hong-Ki;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.40-43
    • /
    • 2010
  • In this study, polyimide(PI) nanofibers mats were prepared by electrospinning and three different fiber morphologies of random, uniaxial, and biaxial orientation were prepared by controlling the speed of drum-shaped collector and other parameters. The SEM studies reveal that the aforesaid morphologies were obtained on the nano-fibrous mats prepared. The ionic conductivity was measured using an in-plane type conductivity tester for the PI mats soaked in the mixture of 1M lithium trifluoro-methane-sulfonate and tetra-ethylene glycol dimethyl ether. The ionic conductivity was surprisingly higher for the biaxial PI mats. For the uniaxially-oriented mats, the ionic conductivity was found to be higher in the parallel direction compared to the perpendicular direction of the fiber orientation. A curious cyclic fluctuation was found in the ionic conductivity with time. The observed behavior was explained by considering the distance between fibers and transport speed of ions used in this study.

The Studies of Structural Stability of LiNi0.5Mn1.5O4 Spinel (스피넬 LiNi0.5Mn1.5O4 양극 활물질의 구조 안정성 연구)

  • Park, Sung-Bin;Kim, Yool-Koo;Lee, Wan-Gyu;Cho, Won-Il;Jang, Ho
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.174-181
    • /
    • 2008
  • The stability of the cathode materials for Li secondary battery is an important factor for its cyclability. The present paper focuses on the structural stability of $LiNi_{0.5}Mn_{1.5}O_4$ during lithiation/delithiation of Li ions and compared to that of $LiMn_{2}O_4$. $LiMn_{2}O_4$ and $LiNi_{0.5}Mn_{1.5}O_4$ powders are synthesized using a solgel method and their structural and electrochemical properties are investigated by XRD, SEM, and charge-discharge tests. $Li_xMn_2O_4$ and $Li_xNi_{0.5}Mn_{1.5}O_4$(x = 0.9,0.5,0.1) specimens are obtained after charge/discharge tests by controlling the cut-off voltage for XRD and TEM investigation. The charge-discharge tests shows that initial capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is 125 mAh/g and that of LiMn2O4 is around 100 mAh/g. The capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is maintained 95% of its initial capacity whereas the capacity of $LiMn_{2}O_4$ is maintained 65% of its initial capacity.

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.

Cation Exchange Capacities, Swelling, and Solubility of Clay Minerals in Acidic Solutions : A Literature Review

  • Park, Won Choon
    • Economic and Environmental Geology
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 1979
  • A literature review is made on the physical and chemical characteristics of clay minerals in acidic solutions from the mineralogical and hydrometallurgical viewpoints. Some of the important characteristics of clays are their ability to cation exchange, swelling, and incongruent dissolution in acidic solutions. Various clay minerals can take up metallic ions from solution via cation exchange mechanism. Generally, cation exchange capacity increases in the following order : kaolinite, halloysite, illite, vermiculite, and montmorillonite. In acidic solutions, the cation uptake such as copper by clay minerals is strongly inhibited by hydrogen and aluminum ions and thus is not economically significant factor for recovery of metals such as uranium and copper. In acidic solutions, the cation uptake is substial. Swelling is minimal at lower pH, possibly due to lattice collapse. Swelling may be controllable with montmorillonite type clays by exchanging interlayer sodium with lithium and/or hydroxylated aluminum species. The effect of add on clay minerals are : 1. Division of aggregates into smaller plates with increase in surface area and porosity. 2. Clay-acid reactions occur in the following order: (i) $H^+$ replacement of interlayer cations, (ii) removal of octahedral cations, such as Al, Fe, and Mg, and (iii) removal of tetrahedral Al ions. Acid attack initiates, around the edges of the clay particles and continued inward, leaving hydrated silica gel residue around the edges. 3. Reaction rates of (ii) and (iii) are pseudo-1st order and proportional to acid concentration. Rate doubles for every temperature increment of $10^{\circ}C$. Implications in in-situ leaching of copper or uranium with acid are : 1. Over the life span of the operation for a year or more, clays attacked by acid will leave silica gel. If such gel covers the surface of valuable mineral surfaces being leached, recovery could be substantially delayed. 2. For a copper deposit containing 0.5% each of clay minerals and recoverable copper, the added cost due to clay-acid reaction is about 1.5c/lb of copper (or 0.93 lbs of $H_2SO_4/1b$ of copper). This acid consumption by clay may be a factor for economic evaluation of in-situ leaching of an oxide copper deposit.

  • PDF

Gas Permeation Properties of Sulfonated 6FDA-Based Polyimide Membranes Exchanged with Metal Ions (금속이온이 치환된 설폰화된 6FDA계 폴리이미드 막의 기체 투과 특성)

  • Im, Hyeon-Soo;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Koh, Hyung-Chul;Lee, Choong-Sub;Ha, Seong-Yong;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.555-560
    • /
    • 2009
  • Sulfonic acid of the sulfonated 6FDA-based polyimides were exchanged with the monovalent ($Li^+$, $Na^+$, $K^+$) and divalent ($Mg^{2+}$, $Ca^{2+}$, $Ba^{2+}$) ions. The effect of metal cations exchanged sulfonated polyimides was investigated in terms of gas permeability and selectivity for $CO_2$, $O_2$ and $N_2$ gases. Thermogravimetric analysis showed that thermal stability of sulfonated polyimide was improved by exchanged metal cations. The permeabilities of monovalent cation-exchanged, sulfonated polyimide were reduced as the ion radius reduced [$Li^+$(0.059 nm)>$Na^+$(0.102 nm)>$K^+$(0.138 nm)], and those of divalent cations exchanged were determined by the ionic radii and electrostatic crosslinking between the polymer and metal cations, whereas the selectivities of all the metal cation-exchanged, sulfonated polyimides for $CO_2/N_2$ and $O_2/N_2$, were higher than those of sulfonated polyimide membranes. The sulfonated polyimide exchanged with the potassium cation showed the $O_2$ permeability of 89.98 Barrer [$1\times10^{-10}\;cm^3$(STP) $cm/cm^2{\cdot}s{\cdot}cmHg$] and the sulfonated polyimide exchanged with the lithium cation showed the $O_2/N_2$ selectivity of 12.9.