Characterization of ion-conductive Behaviors for Crystalline/Amorphous Solid Polyether Electrolytes Using Supercritical $CO_2$ Fluid

초임계 이산화탄소 유체를 이용한 결정성/무정형 폴리에테르 전해질의 이온전도특성 연구

  • ;
  • Y. Tominaga ;
  • S. Asai ;
  • M. Sumita ;
  • 곽근호 (동경공업대학 물질과학과) ;
  • ;
  • ;
  • ;
  • 홍성권 (충남대학교 고분자공학과)
  • Published : 2002.11.01

Abstract

The effect of the supercritical carbon dioxide (sc$CO_2$) on ion-conductive behaviors for polyether electrolytes based on, both poly (ethylene oxide) (PEO) and poly [oligo (oxyethylene glycol) methacrylate] (PMEO) with lithium triflate, LiCF$_3$SO$_3$, has been investigated. In particular, the present research is a new concept for improving the ionic conductivity of polyether electrolytes. The maximum ionic conductivity ($\sigma$$_{max}$) at room temperature of the PEO electrolyte was more than 100 times higher, and the $\sigma$$_{max}$ at 9$0^{\circ}C$ of the PMEO electrolyte was 30 times improved by the se$CO_2$ treatment, respectively. It was revealed that the penetration of $CO_2$ molecules into the polymer matrix causes the increase of carrier ions by ion-dispersion effect and the decrease of glass transition temperature (T$_{g}$) by plasticizing effect that results in the improvement of the ion transport behaviors.viors.

결정성 및 무정형 고분자 전해질의 이온전도 거동에 미치는 초임계 이산화탄소 (sc$CO_2$) 유체의 영향에 대해 조사하였다. 본 연구는 폴리에테르 전해질의 이온전도도 향상에 관한 새로운 개념의 접근 방법이다. sc$CO_2$ 처리결과, 결정성 PEO 전해질의 경우 실온에서 100배 이상의, 무정형 PMEO 전해질은 9$0^{\circ}C$에서 30배 가까운 이온전도도의 상승을 나타내었다. 이는 고분자 매트릭스 내부로 $CO_2$ 분자가 침투함으로써 이온 분산효과로 캐리어 이온의 수를 증가시키고 가소화 효과로 인해 유리전이온도를 저하시켜 이온이동도를 향상시킨 결과이다.

Keywords

References

  1. Br. Polym. J. v.7 P. V. Wright https://doi.org/10.1002/pi.4980070505
  2. Fast Ion Transport in Solids M. B. Armand;J. M. Chabagno;M. T. Duclot;P. Vashishta(ed.);J. N. Mundy(ed.);G. K. Shennoy(ed.)
  3. Electrochim. Acta v.37 S. Sylla;J. Y. Sanchez;M. Armand https://doi.org/10.1016/0013-4686(92)80141-8
  4. Chem. Rev. v.88 M. A. Ratner;D. F. Shriver https://doi.org/10.1021/cr00083a006
  5. Electrochem. Acta v.31 G. Eggert;J. Heitbaum https://doi.org/10.1016/0013-4686(86)87057-8
  6. Nature v.394 F. Croce;G. B. Appetecchi;L. Persi;B. Scrosati https://doi.org/10.1038/28818
  7. Polymer(Korea) v.22 Y. J. Lee;B. K. Choi
  8. Polymer v.43 K. M. Kim;N. G. Park;K. S. Ryu;S. H. Chang https://doi.org/10.1016/S0032-3861(02)00215-X
  9. Polym. J. v.26 D. W. Kim;J. K. Park;H. W. Rhee;H. D. Kim https://doi.org/10.1295/polymj.26.993
  10. J. Power Sources v.97;98 Y. G. Lee;J. K. Park
  11. Polymer(Korea) v.22 S. M. Jun;S. I. Moon;W. S. Kim;K. E. Min
  12. Makromol. Chem. Rapid Comm. v.7 J. R. Craven;R. H. Mobbs;C. Booth;J. R. M. Giles https://doi.org/10.1002/marc.1986.030070208
  13. Electrochim. Acta v.40 K. Xu;C.A. Angell https://doi.org/10.1016/0013-4686(95)00203-Q
  14. Ann. Rev. Mat. Res. v.31 M. J. Fasolka;A. M. Mayes https://doi.org/10.1146/annurev.matsci.31.1.323
  15. Macromolecules v.30 H. R. Allcock;W. E. Krause https://doi.org/10.1021/ma970066n
  16. Polymer v.38 Y. Tominaga;K. Ito;H. Ohno https://doi.org/10.1016/S0032-3861(96)00726-4
  17. Macromolecules v.32 A. Nishimoto;K. Agehara;N. Furuya;T. Watanabe;M. Watanabe https://doi.org/10.1021/ma981436q
  18. Adv. Mater. v.14 M. Yoshio;T. Mukai;K. Kanie;M. Yoshizawa;H. Ohno;T. Kato https://doi.org/10.1002/1521-4095(20020304)14:5<351::AID-ADMA351>3.0.CO;2-D
  19. Solid Polymer Electrolytes F. M. Gray
  20. J. Chem. Soc. Faraday Trans. v.89 P. G. Bruce;C. A. Vincent https://doi.org/10.1039/ft9938903187
  21. Polymer Electrolyte Reviews B. Scrosati;J. R. MacCallum;C. A. Vincent
  22. New Promising Electrochemical Systems for Rechargeable Batteries V. D. Prisyazhnyi;V. I. Lisin;E. S. Lee;V. Barukov(ed.);F. Beck(ed.)
  23. Super-Critical Fluids Y. Arai;T. Sako;Y. Takebayashi
  24. Nature v.412 M. Poliakoff;P. King https://doi.org/10.1038/35084292
  25. Polym. Eng. Sci. v.34 S. K. Goel;E. J. Beckman https://doi.org/10.1002/pen.760341407
  26. J. Mater. Chem. v.10 A. I. Cooper https://doi.org/10.1039/a906486i
  27. Adv. Polym. Sci. v.133 D. A. Canelas;J. M. DeSimone https://doi.org/10.1007/3-540-68442-5_3
  28. Polymer(Korea) v.24 K. N. Lee;H. J. Lee;J. H. Kim
  29. Solid State Electrochemistry P. G. Bruce(Ed.)
  30. Macromolecules v.34 C. P. Rhodes;R. Frech https://doi.org/10.1021/ma001749x
  31. Nature v.412 Z. Gadjourova;Y. G. Andreev;D. P. Tunstall;P. G. Bruce https://doi.org/10.1038/35087538
  32. J. Appl. Polym. Sci. v.59 Y. T. Sheih;J. H. Su;G. Manivannan;P. H. C. Lee;S. P. Sawan;W. D. Spall https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<707::AID-APP16>3.0.CO;2-M
  33. Polymer(Korea) v.25 S. K. Kim;Y. K. Kang;H. W. Rhee;C. J. Lee
  34. Electrochim. Acta v.37 G. Peterson;P. Jacobsson;L. M. Torell https://doi.org/10.1016/0013-4686(92)80097-6
  35. Mater. Res. Soc. Symp. Proc. v.369 R. Frech;W. Huang;M. A. K. L. Dissanayake
  36. Solid State Ionics v.60 G. Petersen;C. M. Torell.;S. Panero;B. Scrosati;C. J. da Silva;M. Smith
  37. Solid State Ionics v.60 W. Y. Xu;J. Smid
  38. Mater. Lett. v.57 Y. Tominaga;Y. Izumi;G. H. Kwak;S. Asai;M. Sumita https://doi.org/10.1016/S0167-577X(02)00871-6
  39. Electrochim. Acta G. H. Kwak;Y. Tominaga;S. Asai;M. Sumita