• Title/Summary/Keyword: Lithium ion Battery

Search Result 926, Processing Time 0.025 seconds

Research Trends of Cathode Materials for Next Generation Lithium Ion Battery (리튬이온전지(Lithium Ion Battery) 양극 물질 연구동향)

  • Na, Sung Min;Park, Hyun Gyu;Kim, Sun Wook;Cho, Hyuk Hee;Park, Kwanggjin
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.1
    • /
    • pp.3-17
    • /
    • 2020
  • 리튬이온전지(LIB)는 기존의 다른 이차전지와 다른 확실한 몇 가지 장점이 있다. 높은 작동 전압과 높은 에너지 밀도, 긴 수명, 그리고 낮은 자체 방전 속도이다. 이러한 장점으로 모바일 제품에서부터 전기 자동차(battery electric vehicle, BEV), 최근에는 전기저장장치(energy storage system, ESS)까지 다양한 분야에서 사용되고 있다. 하지만 사용 범위가 증가함에 따라 높은 안정성을 가지며 더 큰 에너지 용량을 나타내는 리튬이온전지에 대한 요구가 점점 더 커지게 되었다. 리튬이온전지의 용량 증가는 전지의 설계보다는 양극 및 음극 재료, 분리막 및 전해질과 같은 주요 전지 재료의 기술적 진보에 달려 있다. 주요 전지 소재 중에 전지의 성능에 가장 큰 영향을 미치는 것은 전지 반응에 의한 과전압과 가격이 가장 비싼 양극이다. 본 기획 특집에서는 리튬이차전지의 성능에 가장 큰 영향을 미치는 양극 물질의 종류와 향후 연구동향에 대해서 소개하고자 한다. 양극 물질의 발전 방향, 안정성과 용량 증대를 위해서 최근 연구되고 있는 방향에 대해서 자세하게 소개한다.

Two-Stage Charge Equalization Scheme for Hybrid Electric Vehicle Lithium-Ion Battery Cells

  • Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-hui
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.241-243
    • /
    • 2007
  • Two-stage charge equalization scheme for HEV lithium-ion battery string is proposed with the optimal power rating design rule in this paper, where in the first stage the over charged energy of higher voltage cells is drawn out to the single common output capacitor and then, that discharged energy is recovered into the overall battery stack in the second stage. To achieve charge equalization of sort, the conventional flyback DC/DC converters of low power and minimized size are employed. The industrial sample employing both the proposed two-stage cell balancing scheme and the optimal power rating design rule shows good cell balancing performance with reduced size as well as low voltage stresses of the electronic devices.

  • PDF

Development of Battery Temperature Monitoring and Simulation System for Aging Method of Lithium-ion Battery for Electric Vehicles (전기차 리튬이온 배터리의 에이징 공법을 위한 배터리 온도 모니터링 및 시뮬레이션 시스템 개발)

  • Jeong, He-min;Hong, Seong-Wung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.149-152
    • /
    • 2022
  • 최근 전기차의 기술 발전이 급속도로 증가함에 따라 이차전지의 수요가 증가하게 되었다. 그로인해 다량의 고품질 전지를 생산하기 위해 제조 공장이 가동되고 있지만 생산된 전지의 품질의 핵심이 되는 화성공정의 에이징 과정 진행 중 온도 관리에 실패할 경우, 전지의 폭발 및 화재의 위험이 있다. 본 논문은 이차전지를 생산하는 에이징 공정의 효율적인 온도 관리를 위해 목업 모형을 만들어 온도 센서를 통한 온도 수집 및 모니터링 시스템을 개발하고, 공조기 바람을 통해 전지의 온도가 변화하는 속도를 계산하고, 이상온도에 도달해 고온의 상태가 되었을 경우 주변 전지로 전달되는 열을 시뮬레이션 통한 효율적인 공조 대책을 제시하여 이차전지 생산의 품질 향상과 화재 예방을 통해 전기차 생산에 따른 리튬이온 전지의 수요 해결에 기여한다.

  • PDF

Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries (리튬이온 전지용 분리막의 표면 개질 기술 및 연구 동향)

  • Ha, Seongmin;Kim, Daesup;Kwak, Cheol Hwan;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.343-351
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are considered promising energy storage devices with good performance such as high energy density, slow self-discharge rate, high rate charge capacity, and long battery life. However, the application of these LIBs in the high-energy density electric vehicle and large device industries poses a major safety problem. In order to solve this problem, developing a material having high thermal stability and intrinsic safety is the ultimate solution for improving the stability and electrochemical performance of LIBs. This review introduced a surface modification technology of a separator to overcome the stability problem of a commercial separator, and summarized and summarized the research trends using the modified separator for a lithium-ion battery. Based on this, the future prospects for the separator development by surface modification were discussed.

Evaluation of Thermal Diffusivity and Electrochemical Properties of LiAlH4-PVDF Electrolyte Composites (LiAlH4-PVDF 전해질 복합체의 열확산 및 전기화학적 특성평가)

  • HWANG, JUNE-HYEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.574-582
    • /
    • 2022
  • A lithium-ion battery exhibits high energy density but has many limitations due to safety issues. Currently, as a solution for this, research on solid state batteries is attracting attention and is actively being conducted. Among the solid electrolytes, sulfide-based solid electrolytes are receiving much attention with high ion conductivity, but there is a limit to commercialization due to the relatively high price of lithium sulfide, which is a precursor material. This study focused on the possibility of relatively inexpensive and light lithium hydride and conducted an experiment on it. In order to analyze the characteristics of LiAlH4, ion conductivity and thermal stability were measured, and a composites mixed with PVDF, a representative polymer electrolyte, was synthesized to confirm a change in characteristics. And metallurgical changes in the material were performed through XRD, SEM, and BET analysis, and ion conductivity and thermal stability were measured by EIS and LFA methods. As a result, Li3AlH6 having ion conductivity higher than LiAlH4 is formed by the synthesis of composite materials, and thus ion conductivity is slightly improved, but thermal stability is rapidly degraded due to structural irregularity.

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires (배터리화재를 모사한 이온화 메탄의 연소특성 및 모델링)

  • Ko, Hyuk-Ju;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rechargeable battery such as lithium-ion battery has been noticed as a kinds of the energy storage system in the recent energy utilization and widely used actually in various small electronic equipment and electric vehicles. However, many thermal runaway caused battery accidents occurred recently, which still is obstacle for advanced application of lithium ion battery. One of the main differences to general fires is the existence of ionized electrolyte with electron during combustion. Therefore, we simply simulated the ion addition effects of battery fires by introducing an ionized fuel in jet diffusion flames. When the ionized methane through a corona discharge was used as fuel, the overall flame stability and shape such as flame length showed no significant difference from normal methane flame, but NOx and CO emissions measured at the post flame region decreased. The ion addition effect of methane oxidation was also numerically simulated with the modeling of hydrogen addition in the mixture. It was confirmed that the hydrogen addition at a fixed temperature had a similar effects on ionization of methane and hence could be modeled successfully.

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Electrochemical Performance of Tricredyl Phosphate and Trispentafluorophenly Phosphine as Flame Retardant Additives for Lithium-ion Batteries (리튬이온전지용 난연성 첨가제(TCP, TFPP)의 전기화학적 특성)

  • Ahn, Se-Young;Kim, Ke-Tack;Kim, Hyun-Soo;Nam, Sang-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.756-760
    • /
    • 2007
  • Flame retardant(FR) properties were investigated with tricredyl phosphate(TCP) and tris(pentafluorophenyl)phosphine(TFPP) as additives for lithium-ion batteries. Thermal stability was improved with additives in $Li/LiNi\frac{1}{3}Mn\frac{1}{3}Co\frac{1}{3}O_2$ cells comparing to non-additive electrolytes. Oxygen evolution reaction of the cathode material was delayed to up $55^{\circ}C$, from $275^{\circ}C\;to\;330^{\circ}C$. Electrolytes with the 1 wt.% additives provided good FR properties while the resonable battery performance is maintained.

Optimized Network Pruning Method for Li-ion Batteries State-of-charge Estimation on Robot Embedded System (로봇 임베디드 시스템에서 리튬이온 배터리 잔량 추정을 위한 신경망 프루닝 최적화 기법)

  • Dong Hyun Park;Hee-deok Jang;Dong Eui Chang
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.88-92
    • /
    • 2023
  • Lithium-ion batteries are actively used in various industrial sites such as field robots, drones, and electric vehicles due to their high energy efficiency, light weight, long life span, and low self-discharge rate. When using a lithium-ion battery in a field, it is important to accurately estimate the SoC (State of Charge) of batteries to prevent damage. In recent years, SoC estimation using data-based artificial neural networks has been in the spotlight, but it has been difficult to deploy in the embedded board environment at the actual site because the computation is heavy and complex. To solve this problem, neural network lightening technologies such as network pruning have recently attracted attention. When pruning a neural network, the performance varies depending on which layer and how much pruning is performed. In this paper, we introduce an optimized pruning technique by improving the existing pruning method, and perform a comparative experiment to analyze the results.