• Title/Summary/Keyword: Lithium borohydride $LiBH_4$

Search Result 2, Processing Time 0.164 seconds

Development of an Catalyst for Hydrolysis of Aqueous Sodium Borohydride Solution ($NaBH_4$ 수용액 분해 수소 발생용 최적 촉매 개발)

  • Yang Tae-Hyun;Krishnan Palanichamy;Lee Won-Yong;Kim Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.296-298
    • /
    • 2005
  • Hydrogen generation by the hydrolysis of aqueous sodium borohydride $(NaBH_4)$ solutions was studied using IRA-400 anion resin dispersed Pt. Ru catalysts and Lithium Cobalt oxide $(LiCoO_2)$ supported Pt, Ru and PtRu catalysts. The performance of the $LiCoO_2$ supported catalysts is better than the ion exchange resin dispersed catalysts. There is a marked concentration dependence on the performance of the $LiCoO_2$ supported catalysts and the hydrogen generation rate goes down if the borohydride concentration is increased beyond $10\%$. The efficiency of PtRu- $LiCoO_2$ is almost double that of either Ru-$LiCoO_2$ or Pt-$LiCoO_2$ for $NaBH_4$ concentrations up to $10\%$.

  • PDF

Nanoconfinement effects of MCM-41 on the thermal decomposition of metal borohydrides

  • Kim, Sanghoon;Song, Hyejin;Kim, Chul
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • We used differential scanning calorimetry and a thermogravimetric analysis to investigate the effect of being confined in mesoporous MCM-41 on the decomposition of lithium borohydride and magnesium borohydride when heated. The confinement did not cause a phase transition of the metal borohydrides inside MCM-41, but did lower their decomposition temperature. With the exception of a lowering of the temperature, the decomposition reaction mechanism of the metal borohydrides was nearly the same for both the bulk and confined samples.