• 제목/요약/키워드: Lithium battery carbon

검색결과 245건 처리시간 0.027초

Initial Electrochemical Insertion/Desertion of Lithium into Hard Carbon

  • Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Soo;Jin, Chang-Soo;Jin, Bong-Soo;Eom, Seung-Wook
    • Carbon letters
    • /
    • 제1권1호
    • /
    • pp.36-40
    • /
    • 2000
  • The initial irreversible capacity (IIC) of a hard carbon during the charge/discharge reaction is strongly affected by both the initial irreversible capacity on the carbon surface $(IIC_S)$ and the initial irreversible lithium insertion into carbon $(IIC_B)$. The initial coulombic efficiency of the insertion and the desertion of lithium (IIE) can be used as a performance to classify $IIC_B$ of the carbon. The $IIC_B$ was proportional to the specific discharge capacity with a slope, $IIE^{-1}$ - 1. The IIE of hard carbon had four regions. $IIE_A$ for the region of 0~95 mAh/g of $Q_{D1}$ was 60.2%. $IIE_B$ and $IIE_C$ for the regions of 95~172 mAh/g and 172~308 mAh/g had 84.9% and 91.5%, respectively. $IIE_D$ was appeared above 308 mAh/g. But, the $IIE_D$ was reduced to 82.1% compared with $IIE_C$. These IIE might be corresponding to lithium desertion from carbon at the region of 0~172 mAh/g range, lithium desertion from the micropore of carbon at the region of 172~308 mAh/g range, and to the lithium stripping of the plated lithium for the region above 308 mAh/g, respectively.

  • PDF

Carbon Material from Natural Sources as an Anode in Lithium Secondary Battery

  • Bhardwaj, Sunil;Sharon, Maheshwar;Ishihara, T.;Jayabhaye, Sandesh;Afre, Rakesh;Soga, T.;Sharon, Madhuri
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.285-291
    • /
    • 2007
  • Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in ${\mu}m$) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after $100^{th}$ cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.

Electrochemical Properties and Structural Analysis of Carbon-Coated Silicon Anode for Lithium Secondary Batteries

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.37-41
    • /
    • 2008
  • The effects of carbon-coated silicon anode on the electrochemical properties and structural change were investigated. The carbon-coated silicon powders have been prepared by thermal decomposition under argon/10wt% propylene mixed gas flow at $700^{\circ}C$. The surface and crystal structure of the synthesized materials were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Lithium cells with electrodes made from the uncoated and the carbon coated silicon anode were assembled and tested. The carbon-coated silicon particles merged together well after the insertion/extraction of lithium ions, and showed a relatively low irreversible capacity compared with the uncoated silicon particle.

지게차용 DMFC와 리튬배터리 하이브리드시스템의 혼합 적용에 대한 연구 (A Study on a Combined DMFC-Lithium Battery Hybrid System for a Forklift)

  • 주용수;임동진;김홍건;곽이구
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.57-65
    • /
    • 2021
  • This paper explains a DMFC-Lithium Battery hybrid system applied to a forklift. A conventional Lead Acid battery forklift has several problems: long charging times, short operation times, and frequent battery replacements. As a result, hydrogen-powered forklifts are replacing Lead acid battery-powered forklifts due to their shorter refueling time and longer operation times. However, in doing so, we are confronted with the problem of a high hydrogen refueling infrastructure. A Direct Methanol Fuel Cell (DMFC), on the other hand, is an eco-friendly generator that directly converts the chemical energy of methanol into electricity. In general, DMFC is regarded as a small power generator under kW power. In this paper, a DMFC-Battery hybrid system is applied to a 1.5 ton forklift by increasing the power output of the DMFC stack and utilizing the high charge-discharge characteristics of a lithium battery.

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won;Park, Jong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3025-3032
    • /
    • 2012
  • Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용 (Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery)

  • 김으뜸;권순형;김명수;정지철
    • 한국재료학회지
    • /
    • 제24권5호
    • /
    • pp.243-248
    • /
    • 2014
  • Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.

Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery

  • Kim, Taek-Rae;Wu, Jing-Yu;Hu, Quan-Li;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.335-339
    • /
    • 2007
  • Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at $1000^{\circ}C$ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.

Electrochemical Characteristics of Carbon-coated Si/Cu/graphite Composite Anode

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Won-Il;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1607-1610
    • /
    • 2009
  • The carbon-coated Si/Cu powder has been prepared by mechanical ball milling and hydrocarbon gas decomposition methods. The phase of Si/Cu powder was analyzed using X-ray diffraction (XRD), dispersive Raman spectroscopy, electron probe microanalysis (EPMA) and transmission electron microscope (TEM). The carbon-coated Si/Cu powders were used as anode active material for lithium-ion batteries. Their electrochemical properties were investigated by charge/discharge test using commercial LiCo$O_2$ cathode and lithium foil electrode, respectively. The surface phase of Si/Cu powders consisted of carbon phase like the carbon nanotubes (CNTs) with a spacing layer of 0.35 nm. The carbon-coated Si/Cu/graphite composite anode exhibited a higher capacity than commercial graphite anode. However, the cyclic efficiency and the capacity retention of the composite anode were lower compared with graphite anode as cycling proceeds. This effect may be attributed to some mass limitations in LiCo$O_2$ cathode materials during the cycling.

다공성 구형 탄소를 이용한 리튬/유황 전지의 수명개선 및 전기화학특성 연구 (Study of Improvement Life and Electrochemical Characteristics for Lithium/sulfur Battery using Porous Carbon Sphere)

  • 허성규;임수아
    • 전기화학회지
    • /
    • 제24권3호
    • /
    • pp.42-51
    • /
    • 2021
  • 리튬/유황 전지 반응에서 리튬-폴리설파이드(Lithium polysulfide)는 사이클이 반복될수록 전해액에 해리되어 전지 수명을 저하시키는 큰 원인으로 작용한다. 액체 상태인 리튬-폴리설파이드가 전해액에 용해되지 않도록 유황을 담지하고 리튬-폴리설파이드의 흡착을 유도, 추가로 전도도까지 높일 수 있는 비표면적이 큰 다공성 탄소를 모색했다. 본 논문에서는 비표면적이 큰 다공성 탄소 구체를 얻기 위해 추가로 KOH 처리를 통해 1939 m2/g의 탄소 구체를 2200 m2/g으로 높였다. 또한, 유황과의 열처리를 통해 75wt%의 유황이 함유된 탄소 유황 화합물을 만들어 양극재료 사용가능성에 대한 물질 분석을 진행했다. Reference (622; 유황: 60%, 도전재: 20%, 바인더: 20%) 파우치 셀과 75 wt%의 탄소 유황 화합물을 이용하여 만든 파우치 셀의 전기화학적 특성 분석을 진행하였다. 이는 50 사이클 기준으로 Reference 대비 20%의 수명 증가와 10%의율 특성 향상을 보였다.

리튬이온 2차전지용 탄소나노섬유/흑연 복합재 전극의 제조 (Fabrication of Carbon Nanofiber/Graphite Electrodes for Lithium Ion Secondary Battery)

  • 권경희;문승환;김명찬;오세민;김명수
    • 한국응용과학기술학회지
    • /
    • 제20권2호
    • /
    • pp.130-140
    • /
    • 2003
  • In order to improve the lithium ion battery's performance, the carbon nanofibers were introduced to the anode electrode fabricated with natural graphite particles. The influence of structural adjustment of the particles by the introduction method of carbon nanofibers and the content of carbon nanofibers on the electrical property and charge/discharge characteristics of the electrode were investigated. The electrode fabricated with the mixture of 10 wt% of carbon nanofibers grown separately and 90 wt% of graphite particles showed an excellent discharge capacity of 400 mAh/g and the improved cycle performance. The improved performance could be explained by that the carbon nanofibers shortened and uniformly distributed on the surface of graphite particles by ball milling increased the stability for the intercalation/deintercalation of lithium ion and increased the electrical conductivity due to the closed packing between graphite particles.