DOI QR코드

DOI QR Code

Fabrication of Carbon Nanofiber/Graphite Electrodes for Lithium Ion Secondary Battery

리튬이온 2차전지용 탄소나노섬유/흑연 복합재 전극의 제조

  • 권경희 (명지대학교 공과대학 화학공학과) ;
  • 문승환 (명지대학교 공과대학 화학공학과) ;
  • 김명찬 (명지대학교 공과대학 화학공학과) ;
  • 오세민 ((주)카보닉스) ;
  • 김명수 (명지대학교 공과대학 화학공학과)
  • Published : 2003.06.30

Abstract

In order to improve the lithium ion battery's performance, the carbon nanofibers were introduced to the anode electrode fabricated with natural graphite particles. The influence of structural adjustment of the particles by the introduction method of carbon nanofibers and the content of carbon nanofibers on the electrical property and charge/discharge characteristics of the electrode were investigated. The electrode fabricated with the mixture of 10 wt% of carbon nanofibers grown separately and 90 wt% of graphite particles showed an excellent discharge capacity of 400 mAh/g and the improved cycle performance. The improved performance could be explained by that the carbon nanofibers shortened and uniformly distributed on the surface of graphite particles by ball milling increased the stability for the intercalation/deintercalation of lithium ion and increased the electrical conductivity due to the closed packing between graphite particles.

Keywords

References

  1. T. Takamura, Soild State Ion, 152, 19 (2002) https://doi.org/10.1016/S0167-2738(02)00325-9
  2. M. Endo, Y. A. Kim, Y. J. Kim, and T. Hayashi, Korea-USA International Semina, 155 (2002)
  3. D. Ohms, M. Kohlhase, G. BenczurUrmossy, and G. Schadlich, J. Power Sources, 105, 127 (2002) https://doi.org/10.1016/S0378-7753(01)00930-2
  4. 정승훈, 명지대학교 석사학위논문, 용인 (1999)
  5. 최원창, 고려대학교 석사학위논문, 서울 (2002)
  6. H. Wang and M. Yoshio, J. Power Sources, 93, 123 (2001) https://doi.org/10.1016/S0378-7753(00)00552-8
  7. J. K. Lee and B. W. Cho, Carbon Science, 3, 155 (2002)
  8. C. S. Wang, G. T. Wu, and W. Z. Li, J. Power Sources, 16, 1 (1998) https://doi.org/10.1016/0378-7753(85)80001-X
  9. H. J. Kim and T. C. Lee, J. Korea Ind & Eng. Chemistry, 9, 781 (1998)
  10. H. Wang, T. Ikeda, K. Fukuda, and M. Yoshio, J. Power Sources, 83, 141 (1999) https://doi.org/10.1016/S0378-7753(99)00288-8
  11. M. Kraum and M. Baems, Applied Catalysis A : General, 186, 189 (1999) https://doi.org/10.1016/S0926-860X(99)00172-6
  12. W. J. Woo, 명지대학교 석사학위논문, 용인 (2000)
  13. W. J. Woo, B. O. Lee, and M. S. Kim, Macromol. Mater. Eng., 286, 114 (2001) https://doi.org/10.1002/1439-2054(20010201)286:2<114::AID-MAME114>3.0.CO;2-8
  14. K. Niesz, A. Siska, I. Vesselenyi, K. Hernadi, D. Mehn, G. Galbacs, Z. Kenya, and I. Kiricsi, Catalysis Today, 76, 3 (2002) https://doi.org/10.1016/S0920-5861(02)00205-5
  15. N. J. Welham, V. Berbenni, and P. G. Champman, J. Alloy and Compounds, 349, 255 (2003) https://doi.org/10.1016/S0925-8388(02)00880-0